Create modeling_codesage.py
Browse files- modeling_codesage.py +358 -0
modeling_codesage.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
4 |
+
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.modeling_utils import Conv1D, PreTrainedModel
|
12 |
+
from transformers.utils import logging
|
13 |
+
from .config_codesage import CodeSageConfig
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
CODESAGE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
19 |
+
"codesage/codesage-small",
|
20 |
+
"codesage/codesage-base",
|
21 |
+
"codesage/codesage-large",
|
22 |
+
# See all CodeSage models at https://huggingface.co/models?filter=codesage
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
class CodeSageAttention(nn.Module):
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.hidden_size = config.hidden_size
|
31 |
+
self.num_heads = config.num_attention_heads
|
32 |
+
self.head_dim = config.hidden_size // self.num_heads
|
33 |
+
if self.head_dim * self.num_heads != config.hidden_size:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_size` must be divisible by num_heads "
|
36 |
+
f"(got `hidden_size`: {config.hidden_size} and `num_heads`: {self.num_heads})."
|
37 |
+
)
|
38 |
+
|
39 |
+
self.c_attn = Conv1D(3 * self.hidden_size, self.hidden_size)
|
40 |
+
self.c_proj = Conv1D(self.hidden_size, self.hidden_size)
|
41 |
+
|
42 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout_prob)
|
43 |
+
self.residual_dropout = nn.Dropout(config.residual_dropout_prob)
|
44 |
+
|
45 |
+
def attn(self, query, key, value, attention_mask=None, head_mask=None):
|
46 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
47 |
+
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
48 |
+
if attention_mask is not None:
|
49 |
+
attn_weights = attn_weights + attention_mask
|
50 |
+
|
51 |
+
attn_weights = nn.Softmax(dim=-1)(attn_weights)
|
52 |
+
attn_weights = self.attention_dropout(attn_weights)
|
53 |
+
if head_mask is not None:
|
54 |
+
attn_weights = attn_weights * head_mask
|
55 |
+
|
56 |
+
attn_output = torch.matmul(attn_weights, value)
|
57 |
+
return attn_output, attn_weights
|
58 |
+
|
59 |
+
def split_heads(self, tensor, num_heads, attn_head_size):
|
60 |
+
"""
|
61 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
62 |
+
"""
|
63 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
64 |
+
tensor = tensor.view(*new_shape)
|
65 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
66 |
+
|
67 |
+
def merge_heads(self, tensor, num_heads, attn_head_size):
|
68 |
+
"""
|
69 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
70 |
+
"""
|
71 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
72 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
73 |
+
return tensor.view(new_shape)
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
hidden_states,
|
78 |
+
attention_mask=None,
|
79 |
+
head_mask=None,
|
80 |
+
output_attentions=False,
|
81 |
+
):
|
82 |
+
query, key, value = self.c_attn(hidden_states).split(self.hidden_size, dim=2)
|
83 |
+
query = self.split_heads(query, self.num_heads, self.head_dim)
|
84 |
+
key = self.split_heads(key, self.num_heads, self.head_dim)
|
85 |
+
value = self.split_heads(value, self.num_heads, self.head_dim)
|
86 |
+
|
87 |
+
attn_output, attn_weights = self.attn(query, key, value, attention_mask, head_mask)
|
88 |
+
|
89 |
+
attn_output = self.merge_heads(attn_output, self.num_heads, self.head_dim)
|
90 |
+
attn_output = self.c_proj(attn_output)
|
91 |
+
attn_output = self.residual_dropout(attn_output)
|
92 |
+
|
93 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
94 |
+
return outputs # a, present, (attentions)
|
95 |
+
|
96 |
+
|
97 |
+
class CodeSageMLP(nn.Module):
|
98 |
+
def __init__(self, intermediate_size, config):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.c_fc = Conv1D(intermediate_size, config.hidden_size)
|
102 |
+
self.act = ACT2FN[config.activation_function]
|
103 |
+
self.c_proj = Conv1D(config.hidden_size, intermediate_size)
|
104 |
+
self.dropout = nn.Dropout(config.residual_dropout_prob)
|
105 |
+
|
106 |
+
def forward(self, hidden_states):
|
107 |
+
hidden_states = self.c_fc(hidden_states)
|
108 |
+
hidden_states = self.act(hidden_states)
|
109 |
+
hidden_states = self.c_proj(hidden_states)
|
110 |
+
hidden_states = self.dropout(hidden_states)
|
111 |
+
return hidden_states
|
112 |
+
|
113 |
+
|
114 |
+
class CodeSageBlock(nn.Module):
|
115 |
+
def __init__(self, config):
|
116 |
+
super().__init__()
|
117 |
+
hidden_size = config.hidden_size
|
118 |
+
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
|
119 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
120 |
+
self.attn = CodeSageAttention(config)
|
121 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
122 |
+
self.mlp = CodeSageMLP(inner_dim, config)
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
hidden_states,
|
127 |
+
attention_mask=None,
|
128 |
+
head_mask=None,
|
129 |
+
output_attentions=False,
|
130 |
+
):
|
131 |
+
residual = hidden_states
|
132 |
+
hidden_states = self.ln_1(hidden_states)
|
133 |
+
attn_outputs = self.attn(
|
134 |
+
hidden_states,
|
135 |
+
attention_mask=attention_mask,
|
136 |
+
head_mask=head_mask,
|
137 |
+
output_attentions=output_attentions
|
138 |
+
)
|
139 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
140 |
+
outputs = attn_outputs[1:]
|
141 |
+
hidden_states = attn_output + residual
|
142 |
+
|
143 |
+
residual = hidden_states
|
144 |
+
hidden_states = self.ln_2(hidden_states)
|
145 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
146 |
+
hidden_states = residual + feed_forward_hidden_states
|
147 |
+
|
148 |
+
outputs = (hidden_states,) + outputs[1:]
|
149 |
+
return outputs # hidden_states, present, (attentions)
|
150 |
+
|
151 |
+
|
152 |
+
class CodeSagePreTrainedModel(PreTrainedModel):
|
153 |
+
config_class = CodeSageConfig
|
154 |
+
|
155 |
+
def _init_weights(self, module):
|
156 |
+
"""Initialize the weights."""
|
157 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
158 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
159 |
+
if module.bias is not None:
|
160 |
+
module.bias.data.zero_()
|
161 |
+
elif isinstance(module, nn.Embedding):
|
162 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
163 |
+
if module.padding_idx is not None:
|
164 |
+
module.weight.data[module.padding_idx].zero_()
|
165 |
+
elif isinstance(module, nn.LayerNorm):
|
166 |
+
module.bias.data.zero_()
|
167 |
+
module.weight.data.fill_(1.0)
|
168 |
+
|
169 |
+
|
170 |
+
class CodeSageModel(CodeSagePreTrainedModel):
|
171 |
+
def __init__(self, config):
|
172 |
+
super().__init__(config)
|
173 |
+
|
174 |
+
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
175 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
176 |
+
|
177 |
+
self.drop = nn.Dropout(config.embedding_dropout_prob)
|
178 |
+
self.h = nn.ModuleList([CodeSageBlock(config) for _ in range(config.num_hidden_layers)])
|
179 |
+
self.ln_f = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
180 |
+
|
181 |
+
self.init_weights()
|
182 |
+
|
183 |
+
def get_input_embeddings(self):
|
184 |
+
return self.wte
|
185 |
+
|
186 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
187 |
+
self.wte = new_embeddings
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
input_ids=None,
|
192 |
+
attention_mask=None,
|
193 |
+
position_ids=None,
|
194 |
+
head_mask=None,
|
195 |
+
inputs_embeds=None,
|
196 |
+
output_attentions=None,
|
197 |
+
output_hidden_states=None,
|
198 |
+
return_dict=None
|
199 |
+
):
|
200 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
201 |
+
output_hidden_states = (
|
202 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
203 |
+
)
|
204 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
205 |
+
|
206 |
+
if input_ids is not None and inputs_embeds is not None:
|
207 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
208 |
+
if input_ids is not None:
|
209 |
+
input_shape = input_ids.size()
|
210 |
+
elif inputs_embeds is not None:
|
211 |
+
input_shape = inputs_embeds.size()[:-1]
|
212 |
+
else:
|
213 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
214 |
+
|
215 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
216 |
+
if position_ids is None:
|
217 |
+
position_ids = torch.arange(input_shape[-1], dtype=torch.long, device=device)
|
218 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
219 |
+
else:
|
220 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
221 |
+
|
222 |
+
extended_attention_mask = None
|
223 |
+
if attention_mask is not None:
|
224 |
+
assert attention_mask.dim() == 2
|
225 |
+
extended_attention_mask = attention_mask[:, None, None, :]
|
226 |
+
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
227 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
228 |
+
|
229 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
230 |
+
if inputs_embeds is None:
|
231 |
+
inputs_embeds = self.wte(input_ids)
|
232 |
+
|
233 |
+
position_embeds = self.wpe(position_ids)
|
234 |
+
hidden_states = inputs_embeds + position_embeds
|
235 |
+
|
236 |
+
hidden_states = self.drop(hidden_states)
|
237 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
238 |
+
|
239 |
+
all_self_attentions = () if output_attentions else None
|
240 |
+
all_hidden_states = () if output_hidden_states else None
|
241 |
+
for i, block in enumerate(self.h):
|
242 |
+
if output_hidden_states:
|
243 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
244 |
+
|
245 |
+
outputs = block(
|
246 |
+
hidden_states,
|
247 |
+
attention_mask=extended_attention_mask,
|
248 |
+
head_mask=head_mask[i],
|
249 |
+
output_attentions=output_attentions,
|
250 |
+
)
|
251 |
+
|
252 |
+
hidden_states = outputs[0]
|
253 |
+
if output_attentions:
|
254 |
+
all_self_attentions = all_self_attentions + (outputs[1],)
|
255 |
+
|
256 |
+
hidden_states = self.ln_f(hidden_states)
|
257 |
+
hidden_states = hidden_states.view(*output_shape)
|
258 |
+
if output_hidden_states:
|
259 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
260 |
+
|
261 |
+
pooled_output = None # max-pooled output
|
262 |
+
if attention_mask is not None:
|
263 |
+
pooled_output = (hidden_states * attention_mask[:, :, None]).sum(1) / attention_mask.sum(1)[:, None]
|
264 |
+
|
265 |
+
if not return_dict:
|
266 |
+
return tuple(
|
267 |
+
v
|
268 |
+
for v in [hidden_states, pooled_output, all_hidden_states, all_self_attentions]
|
269 |
+
if v is not None
|
270 |
+
)
|
271 |
+
|
272 |
+
return BaseModelOutputWithPooling(
|
273 |
+
last_hidden_state=hidden_states,
|
274 |
+
pooler_output=pooled_output,
|
275 |
+
hidden_states=all_hidden_states,
|
276 |
+
attentions=all_self_attentions
|
277 |
+
)
|
278 |
+
|
279 |
+
|
280 |
+
class CodeSageForSequenceClassification(CodeSagePreTrainedModel):
|
281 |
+
def __init__(self, config):
|
282 |
+
super().__init__(config)
|
283 |
+
self.num_labels = config.num_labels
|
284 |
+
self.config = config
|
285 |
+
|
286 |
+
self.encoder = CodeSageModel(config)
|
287 |
+
classifier_dropout = (
|
288 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.residual_dropout_prob
|
289 |
+
)
|
290 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
291 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
292 |
+
|
293 |
+
# Initialize weights and apply final processing
|
294 |
+
self.post_init()
|
295 |
+
|
296 |
+
def forward(
|
297 |
+
self,
|
298 |
+
input_ids=None,
|
299 |
+
attention_mask=None,
|
300 |
+
position_ids=None,
|
301 |
+
head_mask=None,
|
302 |
+
inputs_embeds=None,
|
303 |
+
labels=None,
|
304 |
+
output_attentions=None,
|
305 |
+
output_hidden_states=None,
|
306 |
+
return_dict=None,
|
307 |
+
):
|
308 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
309 |
+
assert attention_mask is not None, "attention_mask is needed to perform max-pooling"
|
310 |
+
|
311 |
+
outputs = self.encoder(
|
312 |
+
input_ids,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
position_ids=position_ids,
|
315 |
+
head_mask=head_mask,
|
316 |
+
inputs_embeds=inputs_embeds,
|
317 |
+
output_attentions=output_attentions,
|
318 |
+
output_hidden_states=output_hidden_states,
|
319 |
+
return_dict=return_dict,
|
320 |
+
)
|
321 |
+
|
322 |
+
pooled_output = outputs[1]
|
323 |
+
pooled_output = self.dropout(pooled_output)
|
324 |
+
logits = self.classifier(pooled_output)
|
325 |
+
|
326 |
+
loss = None
|
327 |
+
if labels is not None:
|
328 |
+
if self.config.problem_type is None:
|
329 |
+
if self.num_labels == 1:
|
330 |
+
self.config.problem_type = "regression"
|
331 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
332 |
+
self.config.problem_type = "single_label_classification"
|
333 |
+
else:
|
334 |
+
self.config.problem_type = "multi_label_classification"
|
335 |
+
|
336 |
+
if self.config.problem_type == "regression":
|
337 |
+
loss_fct = MSELoss()
|
338 |
+
if self.num_labels == 1:
|
339 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
340 |
+
else:
|
341 |
+
loss = loss_fct(logits, labels)
|
342 |
+
elif self.config.problem_type == "single_label_classification":
|
343 |
+
loss_fct = CrossEntropyLoss()
|
344 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
345 |
+
elif self.config.problem_type == "multi_label_classification":
|
346 |
+
loss_fct = BCEWithLogitsLoss()
|
347 |
+
loss = loss_fct(logits, labels)
|
348 |
+
|
349 |
+
if not return_dict:
|
350 |
+
output = (logits,) + outputs[2:]
|
351 |
+
return ((loss,) + output) if loss is not None else output
|
352 |
+
|
353 |
+
return SequenceClassifierOutput(
|
354 |
+
loss=loss,
|
355 |
+
logits=logits,
|
356 |
+
hidden_states=outputs.hidden_states,
|
357 |
+
attentions=outputs.attentions,
|
358 |
+
)
|