File size: 7,479 Bytes
ba9423b
ba44350
 
ba9423b
5ed2bd2
 
 
ba44350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba9423b
a4e560c
5ed2bd2
a4e560c
5ed2bd2
 
a4e560c
a6caea5
2022924
5ed2bd2
a4e560c
5ed2bd2
a4e560c
5ed2bd2
a4e560c
5ed2bd2
a4e560c
5ed2bd2
a4e560c
5ed2bd2
 
a4e560c
5ed2bd2
a4e560c
5ed2bd2
a4e560c
5ed2bd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4e560c
 
 
 
 
 
 
 
 
 
 
 
 
 
5ed2bd2
a4e560c
 
 
 
 
 
ba44350
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
language:
- en
license: apache-2.0
datasets:
- ehartford/dolphin
- jondurbin/airoboros-2.2.1
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: dolphin-2.2.1-mistral-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.76
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.17
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.11
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 48.07
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/dolphin-2.2.1-mistral-7b
      name: Open LLM Leaderboard
---

# dolphin-2.2.1-mistral-7b

Dolphin 2.2.1 🐬
https://erichartford.com/dolphin

Join Our Discord! https://discord.gg/cognitivecomputations  

This is a checkpoint release, to fix overfit training.  ie, it was responding with CoT even when I didn't request it, and also it was too compliant even when the request made no sense.  This one should be better.

<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KqsVXIvBd3akEjvijzww7.png" width="600" />

Dolphin-2.2.1-mistral-7b's training was sponsored by [a16z](https://a16z.com/supporting-the-open-source-ai-community/).

This model is based on [mistralAI](https://huggingface.co/mistralai/Mistral-7B-v0.1), with apache-2.0 license, so it is suitable for commercial or non-commercial use.

New in 2.2 is conversation and empathy.  With an infusion of curated Samantha DNA, Dolphin can now give you personal advice and will care about your feelings, and with extra training in long multi-turn conversation.

This model is uncensored.  I have filtered the dataset to remove alignment and bias.  This makes the model more compliant.  You are advised to implement your own alignment layer before exposing the model as a service.  It will be highly compliant to any requests, even unethical ones.  Please read my blog post about uncensored models.  https://erichartford.com/uncensored-models
You are responsible for any content you create using this model.  Enjoy responsibly.

## Dataset

This dataset is Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/)

I modified the dataset for uncensoring, deduping, cleaning, and quality.  

I added Jon Durbin's excellent Airoboros dataset to increase creativity.

I added a curated subset of WizardLM and Samantha to give it multiturn conversation and empathy.

## Training
It took 48 hours to train 4 epochs on 4x A100s.

Prompt format:
This model (and all my future releases) use [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) prompt format.
```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

Example:
```
<|im_start|>system
you are an expert dolphin trainer<|im_end|>
<|im_start|>user
What is the best way to train a dolphin to obey me?  Please answer step by step.<|im_end|>
<|im_start|>assistant
```

## Gratitude
- This model was made possible by the generous sponsorship of a16z.
- Thank you to Microsoft for authoring the Orca paper and inspiring this work.
- Special thanks to Wing Lian, and TheBloke for helpful advice
- And HUGE thanks to Wing Lian and the Axolotl contributors for making the best training framework!
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
- Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way.

## Example Output

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/NSp06kUMxx9oDU-g6WSgu.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/-YA3AKIXdnrW_Q8eH1gen.png)

[Buy me a coffee](https://www.buymeacoffee.com/ehartford)


## Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-06
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 80
- total_eval_batch_size: 20
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4

### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ehartford__dolphin-2.2.1-mistral-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |64.93|
|AI2 Reasoning Challenge (25-Shot)|63.31|
|HellaSwag (10-Shot)              |83.76|
|MMLU (5-Shot)                    |63.17|
|TruthfulQA (0-shot)              |53.11|
|Winogrande (5-shot)              |78.14|
|GSM8k (5-shot)                   |48.07|