Update handler.py
Browse files- handler.py +10 -4
handler.py
CHANGED
@@ -2,28 +2,31 @@ import torch
|
|
2 |
from diffusers import StableDiffusionXLPipeline
|
3 |
import base64
|
4 |
from io import BytesIO
|
|
|
5 |
|
6 |
class InferenceHandler:
|
7 |
def __init__(self):
|
|
|
8 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
model_name = "colt12/maxcushion"
|
10 |
|
11 |
-
#
|
12 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
13 |
model_name,
|
14 |
torch_dtype=torch.float16,
|
15 |
use_safetensors=True,
|
16 |
-
#
|
17 |
-
# use_auth_token="your_huggingface_token"
|
18 |
).to(self.device)
|
19 |
|
20 |
def __call__(self, inputs):
|
|
|
21 |
prompt = inputs.get("prompt", "")
|
22 |
if not prompt:
|
23 |
raise ValueError("A prompt must be provided")
|
24 |
|
25 |
negative_prompt = inputs.get("negative_prompt", "")
|
26 |
-
|
|
|
27 |
image = self.pipe(
|
28 |
prompt=prompt,
|
29 |
negative_prompt=negative_prompt,
|
@@ -31,10 +34,13 @@ class InferenceHandler:
|
|
31 |
guidance_scale=7.5
|
32 |
).images[0]
|
33 |
|
|
|
34 |
buffered = BytesIO()
|
35 |
image.save(buffered, format="PNG")
|
36 |
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
37 |
|
|
|
38 |
return {"image_base64": image_base64}
|
39 |
|
|
|
40 |
handler = InferenceHandler()
|
|
|
2 |
from diffusers import StableDiffusionXLPipeline
|
3 |
import base64
|
4 |
from io import BytesIO
|
5 |
+
import os
|
6 |
|
7 |
class InferenceHandler:
|
8 |
def __init__(self):
|
9 |
+
# Determine the device to run on
|
10 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_name = "colt12/maxcushion"
|
12 |
|
13 |
+
# Load the pipeline with authentication from environment variable
|
14 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(
|
15 |
model_name,
|
16 |
torch_dtype=torch.float16,
|
17 |
use_safetensors=True,
|
18 |
+
use_auth_token=os.getenv("HUGGINGFACE_TOKEN") # Securely get the token
|
|
|
19 |
).to(self.device)
|
20 |
|
21 |
def __call__(self, inputs):
|
22 |
+
# Extract the prompt from inputs
|
23 |
prompt = inputs.get("prompt", "")
|
24 |
if not prompt:
|
25 |
raise ValueError("A prompt must be provided")
|
26 |
|
27 |
negative_prompt = inputs.get("negative_prompt", "")
|
28 |
+
|
29 |
+
# Generate the image using the pipeline
|
30 |
image = self.pipe(
|
31 |
prompt=prompt,
|
32 |
negative_prompt=negative_prompt,
|
|
|
34 |
guidance_scale=7.5
|
35 |
).images[0]
|
36 |
|
37 |
+
# Convert the image to base64 encoding
|
38 |
buffered = BytesIO()
|
39 |
image.save(buffered, format="PNG")
|
40 |
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
41 |
|
42 |
+
# Return the base64 image
|
43 |
return {"image_base64": image_base64}
|
44 |
|
45 |
+
# Instantiate the handler
|
46 |
handler = InferenceHandler()
|