"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import IPython.display as ipd\n",
+ "import numpy as np\n",
+ "import random\n",
+ "\n",
+ "rand_int = random.randint(0, len(all)-1)\n",
+ "\n",
+ "print(all[rand_int][\"sentence\"])\n",
+ "ipd.Audio(data=all[rand_int][\"audio\"][\"array\"], autoplay=True, rate=16000)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "1d66bd44",
+ "metadata": {
+ "id": "eJY7I0XAwe9p"
+ },
+ "outputs": [],
+ "source": [
+ "def prepare_dataset(batch):\n",
+ " audio = batch[\"audio\"]\n",
+ "\n",
+ " # batched output is \"un-batched\"\n",
+ " batch[\"input_values\"] = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_values[0]\n",
+ " batch[\"input_length\"] = len(batch[\"input_values\"])\n",
+ " \n",
+ " with processor.as_target_processor():\n",
+ " batch[\"labels\"] = processor(batch[\"sentence\"]).input_ids\n",
+ " return batch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "f5360bdd",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81,
+ "referenced_widgets": [
+ "c47ea368dd08403aa09b2bafdbb4b580",
+ "e77cf973d5824ae7b89bafd814805c2a",
+ "071b7647e1fe49609a48e4281a9efd0f",
+ "c97c00fcf2e64f18b637337f9244d748",
+ "9ca82fa27d1043e9ac9f10301e0b33bc",
+ "cc6c7e9931c140db8ba7a977c4461ce5",
+ "d207784bda7e4dd8858170f470ae2833",
+ "0800fef7de6e45d380873f974882d67e",
+ "926440595aa44c698588e02b86eb8c4c",
+ "ea2806c776384f1a90e36b72c2c17a44",
+ "6b72385c07134782995fcd76e675da7c",
+ "3653b92c9f2a408eac253e1d5153daf4",
+ "73ffd9b8166c4ec78ff2b62d17690327",
+ "6b133a1e11e44f68846ff931446559cf",
+ "7c98818547c84af7ba9284bc20101691",
+ "41b501a16b2a4f709197af5cdd5227cb",
+ "3b4fbe2916894e48b8f93ca63e203aca",
+ "c002386685c0413d8181b054d3f9d49f",
+ "cfb70829b5e1461abcb01872b74a194c",
+ "ed943db2b5274022a606ce4103d54425",
+ "cfb242eb549c4e66afcedefb575b4e38",
+ "a0313055d29f4a60837e59ac4d8a3870"
+ ]
+ },
+ "id": "-np9xYK-wl8q",
+ "outputId": "573f6f67-e5b2-4977-a564-3919e7903592"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "c97a52c72198489f89a4481f722ac35a",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "0ex [00:00, ?ex/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/cs/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8/cache-fcc378c48562cf8c.arrow\n"
+ ]
+ }
+ ],
+ "source": [
+ "all = all.map(prepare_dataset, remove_columns=all.column_names)\n",
+ "common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "5e8bb4ee",
+ "metadata": {
+ "id": "tborvC9hx88e"
+ },
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "\n",
+ "from dataclasses import dataclass, field\n",
+ "from typing import Any, Dict, List, Optional, Union\n",
+ "\n",
+ "@dataclass\n",
+ "class DataCollatorCTCWithPadding:\n",
+ " \"\"\"\n",
+ " Data collator that will dynamically pad the inputs received.\n",
+ " Args:\n",
+ " processor (:class:`~transformers.Wav2Vec2Processor`)\n",
+ " The processor used for proccessing the data.\n",
+ " padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
+ " Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
+ " among:\n",
+ " * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
+ " sequence if provided).\n",
+ " * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
+ " maximum acceptable input length for the model if that argument is not provided.\n",
+ " * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
+ " different lengths).\n",
+ " \"\"\"\n",
+ "\n",
+ " processor: Wav2Vec2Processor\n",
+ " padding: Union[bool, str] = True\n",
+ "\n",
+ " def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
+ " # split inputs and labels since they have to be of different lenghts and need\n",
+ " # different padding methods\n",
+ " input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
+ " label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
+ "\n",
+ " batch = self.processor.pad(\n",
+ " input_features,\n",
+ " padding=self.padding,\n",
+ " return_tensors=\"pt\",\n",
+ " )\n",
+ " with self.processor.as_target_processor():\n",
+ " labels_batch = self.processor.pad(\n",
+ " label_features,\n",
+ " padding=self.padding,\n",
+ " return_tensors=\"pt\",\n",
+ " )\n",
+ "\n",
+ " # replace padding with -100 to ignore loss correctly\n",
+ " labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
+ "\n",
+ " batch[\"labels\"] = labels\n",
+ "\n",
+ " return batch"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "98dfd52e",
+ "metadata": {
+ "id": "lbQf5GuZyQ4_"
+ },
+ "outputs": [],
+ "source": [
+ "data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "5efc8697",
+ "metadata": {
+ "id": "9Xsux2gmyXso"
+ },
+ "outputs": [],
+ "source": [
+ "from datasets import load_metric\n",
+ "\n",
+ "wer_metric = load_metric(\"wer\")\n",
+ "cer_metric = load_metric(\"cer\")\n",
+ "metrics = [wer_metric, cer_metric]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "ec29ec29",
+ "metadata": {
+ "id": "1XZ-kjweyTy_"
+ },
+ "outputs": [],
+ "source": [
+ "def compute_metrics(pred):\n",
+ " pred_logits = pred.predictions\n",
+ " pred_ids = np.argmax(pred_logits, axis=-1)\n",
+ "\n",
+ " pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
+ "\n",
+ " pred_str = processor.batch_decode(pred_ids)\n",
+ " # we do not want to group tokens when computing the metrics\n",
+ " label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
+ "\n",
+ " wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
+ " cer = cer_metric.compute(predictions=pred_str, references=label_str)\n",
+ "\n",
+ " return {\"wer\": wer, \"cer\": cer}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "d6d68f86",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "e7cqAWIayn6w",
+ "outputId": "7a7ef020-bc8f-41e2-846c-645be598312e"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.weight', 'quantizer.weight_proj.bias', 'quantizer.codevectors', 'quantizer.weight_proj.weight', 'project_q.bias', 'project_hid.bias', 'project_q.weight']\n",
+ "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
+ "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
+ "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import Wav2Vec2ForCTC\n",
+ "\n",
+ "model = Wav2Vec2ForCTC.from_pretrained(\n",
+ " #\"comodoro/wav2vec2-xls-r-300m-cs-cv8\", \n",
+ " \"facebook/wav2vec2-xls-r-300m\", \n",
+ " attention_dropout=0.1,\n",
+ " hidden_dropout=0.1,\n",
+ " feat_proj_dropout=0.0,\n",
+ " mask_time_prob=0.1,\n",
+ " layerdrop=0.1,\n",
+ " ctc_loss_reduction=\"mean\", \n",
+ " pad_token_id=processor.tokenizer.pad_token_id,\n",
+ " vocab_size=len(processor.tokenizer),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "23d91592",
+ "metadata": {
+ "id": "oGI8zObtZ3V0"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1700: FutureWarning: The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5.Please use the equivalent `freeze_feature_encoder` method instead.\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "model.freeze_feature_extractor()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "bf112a3a",
+ "metadata": {
+ "id": "KbeKSV7uzGPP"
+ },
+ "outputs": [],
+ "source": [
+ "from transformers import TrainingArguments\n",
+ "\n",
+ "training_args = TrainingArguments(\n",
+ " output_dir=repo_name,\n",
+ " group_by_length=True,\n",
+ " per_device_train_batch_size=16,\n",
+ " gradient_accumulation_steps=1,\n",
+ " eval_accumulation_steps=1,\n",
+ " evaluation_strategy=\"steps\",\n",
+ " num_train_epochs=50,\n",
+ " gradient_checkpointing=True,\n",
+ " fp16=True,\n",
+ " save_steps=800,\n",
+ " eval_steps=800,\n",
+ " logging_steps=250,\n",
+ " learning_rate=1e-5,\n",
+ " warmup_steps=600,\n",
+ " save_total_limit=2,\n",
+ " report_to=\"tensorboard\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "6d209cae",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "rY7vBmFCPFgC",
+ "outputId": "a180bf3f-f798-4947-ff58-207d7aaab695"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Using amp half precision backend\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import Trainer\n",
+ "\n",
+ "trainer = Trainer(\n",
+ " model=model,\n",
+ " data_collator=data_collator,\n",
+ " args=training_args,\n",
+ " compute_metrics=compute_metrics,\n",
+ " train_dataset=all,\n",
+ " eval_dataset=common_voice_test,\n",
+ " tokenizer=processor.feature_extractor,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "350ccf96",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 312
+ },
+ "id": "9fRr9TG5pGBl",
+ "outputId": "8bdf1d11-bca1-46af-db67-518f85586f7a"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "/workspace/.local/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
+ " warnings.warn(\n",
+ "***** Running training *****\n",
+ " Num examples = 159605\n",
+ " Num Epochs = 50\n",
+ " Instantaneous batch size per device = 16\n",
+ " Total train batch size (w. parallel, distributed & accumulation) = 16\n",
+ " Gradient Accumulation steps = 1\n",
+ " Total optimization steps = 498800\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [ 31733/498800 13:51:39 < 204:01:41, 0.64 it/s, Epoch 3.18/50]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ " Wer | \n",
+ " Cer | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 800 | \n",
+ " 4.750000 | \n",
+ " 3.766450 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 1600 | \n",
+ " 3.479800 | \n",
+ " 3.361168 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 2400 | \n",
+ " 3.331700 | \n",
+ " 3.301482 | \n",
+ " 1.000000 | \n",
+ " 1.000000 | \n",
+ "
\n",
+ " \n",
+ " 3200 | \n",
+ " 3.197300 | \n",
+ " 2.584765 | \n",
+ " 0.999802 | \n",
+ " 0.856619 | \n",
+ "
\n",
+ " \n",
+ " 4000 | \n",
+ " 1.807400 | \n",
+ " 0.908614 | \n",
+ " 0.640853 | \n",
+ " 0.151860 | \n",
+ "
\n",
+ " \n",
+ " 4800 | \n",
+ " 1.342100 | \n",
+ " 0.550420 | \n",
+ " 0.432450 | \n",
+ " 0.095473 | \n",
+ "
\n",
+ " \n",
+ " 5600 | \n",
+ " 1.132700 | \n",
+ " 0.394087 | \n",
+ " 0.347781 | \n",
+ " 0.073488 | \n",
+ "
\n",
+ " \n",
+ " 6400 | \n",
+ " 0.999300 | \n",
+ " 0.323176 | \n",
+ " 0.293804 | \n",
+ " 0.061316 | \n",
+ "
\n",
+ " \n",
+ " 7200 | \n",
+ " 0.928100 | \n",
+ " 0.273187 | \n",
+ " 0.263014 | \n",
+ " 0.054848 | \n",
+ "
\n",
+ " \n",
+ " 8000 | \n",
+ " 0.897600 | \n",
+ " 0.244686 | \n",
+ " 0.247510 | \n",
+ " 0.051767 | \n",
+ "
\n",
+ " \n",
+ " 8800 | \n",
+ " 0.813400 | \n",
+ " 0.227193 | \n",
+ " 0.236362 | \n",
+ " 0.049280 | \n",
+ "
\n",
+ " \n",
+ " 9600 | \n",
+ " 0.775800 | \n",
+ " 0.211454 | \n",
+ " 0.225769 | \n",
+ " 0.047510 | \n",
+ "
\n",
+ " \n",
+ " 10400 | \n",
+ " 0.757200 | \n",
+ " 0.200528 | \n",
+ " 0.216522 | \n",
+ " 0.045622 | \n",
+ "
\n",
+ " \n",
+ " 11200 | \n",
+ " 0.729700 | \n",
+ " 0.194056 | \n",
+ " 0.210582 | \n",
+ " 0.044185 | \n",
+ "
\n",
+ " \n",
+ " 12000 | \n",
+ " 0.698300 | \n",
+ " 0.189558 | \n",
+ " 0.205671 | \n",
+ " 0.043360 | \n",
+ "
\n",
+ " \n",
+ " 12800 | \n",
+ " 0.681800 | \n",
+ " 0.180987 | \n",
+ " 0.198444 | \n",
+ " 0.042125 | \n",
+ "
\n",
+ " \n",
+ " 13600 | \n",
+ " 0.644600 | \n",
+ " 0.176266 | \n",
+ " 0.191612 | \n",
+ " 0.040599 | \n",
+ "
\n",
+ " \n",
+ " 14400 | \n",
+ " 0.645400 | \n",
+ " 0.167550 | \n",
+ " 0.188999 | \n",
+ " 0.040012 | \n",
+ "
\n",
+ " \n",
+ " 15200 | \n",
+ " 0.646100 | \n",
+ " 0.166065 | \n",
+ " 0.182326 | \n",
+ " 0.038584 | \n",
+ "
\n",
+ " \n",
+ " 16000 | \n",
+ " 0.648300 | \n",
+ " 0.165056 | \n",
+ " 0.180920 | \n",
+ " 0.038490 | \n",
+ "
\n",
+ " \n",
+ " 16800 | \n",
+ " 0.622600 | \n",
+ " 0.158542 | \n",
+ " 0.178583 | \n",
+ " 0.038353 | \n",
+ "
\n",
+ " \n",
+ " 17600 | \n",
+ " 0.602400 | \n",
+ " 0.152548 | \n",
+ " 0.174485 | \n",
+ " 0.037284 | \n",
+ "
\n",
+ " \n",
+ " 18400 | \n",
+ " 0.615900 | \n",
+ " 0.153470 | \n",
+ " 0.174366 | \n",
+ " 0.037303 | \n",
+ "
\n",
+ " \n",
+ " 19200 | \n",
+ " 0.587300 | \n",
+ " 0.149551 | \n",
+ " 0.169594 | \n",
+ " 0.036240 | \n",
+ "
\n",
+ " \n",
+ " 20000 | \n",
+ " 0.582300 | \n",
+ " 0.147552 | \n",
+ " 0.169594 | \n",
+ " 0.036146 | \n",
+ "
\n",
+ " \n",
+ " 20800 | \n",
+ " 0.541400 | \n",
+ " 0.145685 | \n",
+ " 0.167792 | \n",
+ " 0.035813 | \n",
+ "
\n",
+ " \n",
+ " 21600 | \n",
+ " 0.571100 | \n",
+ " 0.146135 | \n",
+ " 0.167455 | \n",
+ " 0.036029 | \n",
+ "
\n",
+ " \n",
+ " 22400 | \n",
+ " 0.565000 | \n",
+ " 0.142886 | \n",
+ " 0.164624 | \n",
+ " 0.035194 | \n",
+ "
\n",
+ " \n",
+ " 23200 | \n",
+ " 0.555500 | \n",
+ " 0.141050 | \n",
+ " 0.162901 | \n",
+ " 0.034871 | \n",
+ "
\n",
+ " \n",
+ " 24000 | \n",
+ " 0.522600 | \n",
+ " 0.140978 | \n",
+ " 0.162050 | \n",
+ " 0.034359 | \n",
+ "
\n",
+ " \n",
+ " 24800 | \n",
+ " 0.535000 | \n",
+ " 0.137778 | \n",
+ " 0.160585 | \n",
+ " 0.035011 | \n",
+ "
\n",
+ " \n",
+ " 25600 | \n",
+ " 0.552500 | \n",
+ " 0.136405 | \n",
+ " 0.159119 | \n",
+ " 0.034666 | \n",
+ "
\n",
+ " \n",
+ " 26400 | \n",
+ " 0.519000 | \n",
+ " 0.138575 | \n",
+ " 0.157397 | \n",
+ " 0.034004 | \n",
+ "
\n",
+ " \n",
+ " 27200 | \n",
+ " 0.522700 | \n",
+ " 0.132574 | \n",
+ " 0.159060 | \n",
+ " 0.034317 | \n",
+ "
\n",
+ " \n",
+ " 28000 | \n",
+ " 0.493100 | \n",
+ " 0.133862 | \n",
+ " 0.155753 | \n",
+ " 0.033766 | \n",
+ "
\n",
+ " \n",
+ " 28800 | \n",
+ " 0.494900 | \n",
+ " 0.132223 | \n",
+ " 0.154723 | \n",
+ " 0.033183 | \n",
+ "
\n",
+ " \n",
+ " 29600 | \n",
+ " 0.509100 | \n",
+ " 0.131310 | \n",
+ " 0.153535 | \n",
+ " 0.033147 | \n",
+ "
\n",
+ " \n",
+ " 30400 | \n",
+ " 0.487900 | \n",
+ " 0.128967 | \n",
+ " 0.150704 | \n",
+ " 0.032260 | \n",
+ "
\n",
+ " \n",
+ " 31200 | \n",
+ " 0.500500 | \n",
+ " 0.130414 | \n",
+ " 0.151654 | \n",
+ " 0.032628 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-1600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-2400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-3200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-1600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-4000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-2400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-4800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-3200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-5600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-6400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-7200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-5600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-8000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-6400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-8800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-7200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-9600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-8000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-10400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-8800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-11200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-9600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-12000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-10400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-12800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-11200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-13600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-12000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-14400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-12800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-15200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-13600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-16000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-14400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-16800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-15200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-17600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-16000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-18400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-16800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-19200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-17600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-20000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-18400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-20800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-19200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-21600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-20000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-22400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-20800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-23200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-21600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-24000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-22400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-24800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-23200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-25600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-24000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-26400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-24800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-27200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-25600] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-28000\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-26400] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-28800\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-27200] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-29600\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-28000] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-30400\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-28800] due to args.save_total_limit\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 7267\n",
+ " Batch size = 8\n",
+ "Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-31200\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/config.json\n",
+ "Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/pytorch_model.bin\n",
+ "Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/preprocessor_config.json\n",
+ "Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-29600] due to args.save_total_limit\n"
+ ]
+ },
+ {
+ "ename": "KeyboardInterrupt",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1337\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1338\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1339\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch_iterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1340\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1341\u001b[0m \u001b[0;31m# Skip past any already trained steps if resuming training\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 519\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sampler_iter\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 520\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 521\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 522\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_yielded\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 523\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dataset_kind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0m_DatasetKind\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mIterable\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m_next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 559\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 560\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dataset_fetcher\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pin_memory\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36mfetch\u001b[0;34m(self, possibly_batched_index)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1923\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# noqa: F811\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1924\u001b[0m \u001b[0;34m\"\"\"Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1925\u001b[0;31m return self._getitem(\n\u001b[0m\u001b[1;32m 1926\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1927\u001b[0m )\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m_getitem\u001b[0;34m(self, key, decoded, **kwargs)\u001b[0m\n\u001b[1;32m 1908\u001b[0m \u001b[0mformatter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_formatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformat_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeatures\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeatures\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdecoded\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecoded\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mformat_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1909\u001b[0m \u001b[0mpa_subtable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquery_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_indices\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_indices\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1910\u001b[0;31m formatted_output = format_table(\n\u001b[0m\u001b[1;32m 1911\u001b[0m \u001b[0mpa_subtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mformatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mformat_columns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_all_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_all_columns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1912\u001b[0m )\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mformat_table\u001b[0;34m(table, key, formatter, format_columns, output_all_columns)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[0mpython_formatter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPythonFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeatures\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mformat_columns\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 532\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mquery_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 533\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"column\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformat_columns\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, pa_table, query_type)\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery_type\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mRowFormat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mColumnFormat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBatchFormat\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 280\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"row\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 281\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 282\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"column\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mformat_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mPythonFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFormatter\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mformat_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 310\u001b[0;31m \u001b[0mrow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython_arrow_extractor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextract_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 311\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecoded\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0mrow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython_features_decoder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecode_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mextract_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mPythonArrowExtractor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseArrowExtractor\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextract_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_unnest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_pydict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextract_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+ ]
+ }
+ ],
+ "source": [
+ "trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6dad336a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trainer.create_model_card()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ed1234c4",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f11836c9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}