"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import IPython.display as ipd\n",
"import numpy as np\n",
"import random\n",
"\n",
"rand_int = random.randint(0, len(all)-1)\n",
"\n",
"print(all[rand_int][\"sentence\"])\n",
"ipd.Audio(data=all[rand_int][\"audio\"][\"array\"], autoplay=True, rate=16000)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1d66bd44",
"metadata": {
"id": "eJY7I0XAwe9p"
},
"outputs": [],
"source": [
"def prepare_dataset(batch):\n",
" audio = batch[\"audio\"]\n",
"\n",
" # batched output is \"un-batched\"\n",
" batch[\"input_values\"] = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_values[0]\n",
" batch[\"input_length\"] = len(batch[\"input_values\"])\n",
" \n",
" with processor.as_target_processor():\n",
" batch[\"labels\"] = processor(batch[\"sentence\"]).input_ids\n",
" return batch"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "f5360bdd",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 81,
"referenced_widgets": [
"c47ea368dd08403aa09b2bafdbb4b580",
"e77cf973d5824ae7b89bafd814805c2a",
"071b7647e1fe49609a48e4281a9efd0f",
"c97c00fcf2e64f18b637337f9244d748",
"9ca82fa27d1043e9ac9f10301e0b33bc",
"cc6c7e9931c140db8ba7a977c4461ce5",
"d207784bda7e4dd8858170f470ae2833",
"0800fef7de6e45d380873f974882d67e",
"926440595aa44c698588e02b86eb8c4c",
"ea2806c776384f1a90e36b72c2c17a44",
"6b72385c07134782995fcd76e675da7c",
"3653b92c9f2a408eac253e1d5153daf4",
"73ffd9b8166c4ec78ff2b62d17690327",
"6b133a1e11e44f68846ff931446559cf",
"7c98818547c84af7ba9284bc20101691",
"41b501a16b2a4f709197af5cdd5227cb",
"3b4fbe2916894e48b8f93ca63e203aca",
"c002386685c0413d8181b054d3f9d49f",
"cfb70829b5e1461abcb01872b74a194c",
"ed943db2b5274022a606ce4103d54425",
"cfb242eb549c4e66afcedefb575b4e38",
"a0313055d29f4a60837e59ac4d8a3870"
]
},
"id": "-np9xYK-wl8q",
"outputId": "573f6f67-e5b2-4977-a564-3919e7903592"
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c97a52c72198489f89a4481f722ac35a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0ex [00:00, ?ex/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading cached processed dataset at /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/cs/8.0.0/b8bc4d453193c06a43269b46cd87f075c70f152ac963b7f28f7a2760c45ec3e8/cache-fcc378c48562cf8c.arrow\n"
]
}
],
"source": [
"all = all.map(prepare_dataset, remove_columns=all.column_names)\n",
"common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "5e8bb4ee",
"metadata": {
"id": "tborvC9hx88e"
},
"outputs": [],
"source": [
"import torch\n",
"\n",
"from dataclasses import dataclass, field\n",
"from typing import Any, Dict, List, Optional, Union\n",
"\n",
"@dataclass\n",
"class DataCollatorCTCWithPadding:\n",
" \"\"\"\n",
" Data collator that will dynamically pad the inputs received.\n",
" Args:\n",
" processor (:class:`~transformers.Wav2Vec2Processor`)\n",
" The processor used for proccessing the data.\n",
" padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
" Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
" among:\n",
" * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
" sequence if provided).\n",
" * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
" maximum acceptable input length for the model if that argument is not provided.\n",
" * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
" different lengths).\n",
" \"\"\"\n",
"\n",
" processor: Wav2Vec2Processor\n",
" padding: Union[bool, str] = True\n",
"\n",
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
" # split inputs and labels since they have to be of different lenghts and need\n",
" # different padding methods\n",
" input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
"\n",
" batch = self.processor.pad(\n",
" input_features,\n",
" padding=self.padding,\n",
" return_tensors=\"pt\",\n",
" )\n",
" with self.processor.as_target_processor():\n",
" labels_batch = self.processor.pad(\n",
" label_features,\n",
" padding=self.padding,\n",
" return_tensors=\"pt\",\n",
" )\n",
"\n",
" # replace padding with -100 to ignore loss correctly\n",
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
"\n",
" batch[\"labels\"] = labels\n",
"\n",
" return batch"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "98dfd52e",
"metadata": {
"id": "lbQf5GuZyQ4_"
},
"outputs": [],
"source": [
"data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "5efc8697",
"metadata": {
"id": "9Xsux2gmyXso"
},
"outputs": [],
"source": [
"from datasets import load_metric\n",
"\n",
"wer_metric = load_metric(\"wer\")\n",
"cer_metric = load_metric(\"cer\")\n",
"metrics = [wer_metric, cer_metric]"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "ec29ec29",
"metadata": {
"id": "1XZ-kjweyTy_"
},
"outputs": [],
"source": [
"def compute_metrics(pred):\n",
" pred_logits = pred.predictions\n",
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
"\n",
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
"\n",
" pred_str = processor.batch_decode(pred_ids)\n",
" # we do not want to group tokens when computing the metrics\n",
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
"\n",
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
" cer = cer_metric.compute(predictions=pred_str, references=label_str)\n",
"\n",
" return {\"wer\": wer, \"cer\": cer}"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "d6d68f86",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e7cqAWIayn6w",
"outputId": "7a7ef020-bc8f-41e2-846c-645be598312e"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.weight', 'quantizer.weight_proj.bias', 'quantizer.codevectors', 'quantizer.weight_proj.weight', 'project_q.bias', 'project_hid.bias', 'project_q.weight']\n",
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
]
}
],
"source": [
"from transformers import Wav2Vec2ForCTC\n",
"\n",
"model = Wav2Vec2ForCTC.from_pretrained(\n",
" #\"comodoro/wav2vec2-xls-r-300m-cs-cv8\", \n",
" \"facebook/wav2vec2-xls-r-300m\", \n",
" attention_dropout=0.1,\n",
" hidden_dropout=0.1,\n",
" feat_proj_dropout=0.0,\n",
" mask_time_prob=0.1,\n",
" layerdrop=0.1,\n",
" ctc_loss_reduction=\"mean\", \n",
" pad_token_id=processor.tokenizer.pad_token_id,\n",
" vocab_size=len(processor.tokenizer),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "23d91592",
"metadata": {
"id": "oGI8zObtZ3V0"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspace/.local/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1700: FutureWarning: The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5.Please use the equivalent `freeze_feature_encoder` method instead.\n",
" warnings.warn(\n"
]
}
],
"source": [
"model.freeze_feature_extractor()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "bf112a3a",
"metadata": {
"id": "KbeKSV7uzGPP"
},
"outputs": [],
"source": [
"from transformers import TrainingArguments\n",
"\n",
"training_args = TrainingArguments(\n",
" output_dir=repo_name,\n",
" group_by_length=True,\n",
" per_device_train_batch_size=16,\n",
" gradient_accumulation_steps=1,\n",
" eval_accumulation_steps=1,\n",
" evaluation_strategy=\"steps\",\n",
" num_train_epochs=50,\n",
" gradient_checkpointing=True,\n",
" fp16=True,\n",
" save_steps=800,\n",
" eval_steps=800,\n",
" logging_steps=250,\n",
" learning_rate=1e-5,\n",
" warmup_steps=600,\n",
" save_total_limit=2,\n",
" report_to=\"tensorboard\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "6d209cae",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rY7vBmFCPFgC",
"outputId": "a180bf3f-f798-4947-ff58-207d7aaab695"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using amp half precision backend\n"
]
}
],
"source": [
"from transformers import Trainer\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" data_collator=data_collator,\n",
" args=training_args,\n",
" compute_metrics=compute_metrics,\n",
" train_dataset=all,\n",
" eval_dataset=common_voice_test,\n",
" tokenizer=processor.feature_extractor,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "350ccf96",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 312
},
"id": "9fRr9TG5pGBl",
"outputId": "8bdf1d11-bca1-46af-db67-518f85586f7a"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"/workspace/.local/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n",
"***** Running training *****\n",
" Num examples = 159605\n",
" Num Epochs = 50\n",
" Instantaneous batch size per device = 16\n",
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
" Gradient Accumulation steps = 1\n",
" Total optimization steps = 498800\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" \n",
"
\n",
" [ 31733/498800 13:51:39 < 204:01:41, 0.64 it/s, Epoch 3.18/50]\n",
"
\n",
" \n",
" \n",
" \n",
" Step | \n",
" Training Loss | \n",
" Validation Loss | \n",
" Wer | \n",
" Cer | \n",
"
\n",
" \n",
" \n",
" \n",
" 800 | \n",
" 4.750000 | \n",
" 3.766450 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 1600 | \n",
" 3.479800 | \n",
" 3.361168 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 2400 | \n",
" 3.331700 | \n",
" 3.301482 | \n",
" 1.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 3200 | \n",
" 3.197300 | \n",
" 2.584765 | \n",
" 0.999802 | \n",
" 0.856619 | \n",
"
\n",
" \n",
" 4000 | \n",
" 1.807400 | \n",
" 0.908614 | \n",
" 0.640853 | \n",
" 0.151860 | \n",
"
\n",
" \n",
" 4800 | \n",
" 1.342100 | \n",
" 0.550420 | \n",
" 0.432450 | \n",
" 0.095473 | \n",
"
\n",
" \n",
" 5600 | \n",
" 1.132700 | \n",
" 0.394087 | \n",
" 0.347781 | \n",
" 0.073488 | \n",
"
\n",
" \n",
" 6400 | \n",
" 0.999300 | \n",
" 0.323176 | \n",
" 0.293804 | \n",
" 0.061316 | \n",
"
\n",
" \n",
" 7200 | \n",
" 0.928100 | \n",
" 0.273187 | \n",
" 0.263014 | \n",
" 0.054848 | \n",
"
\n",
" \n",
" 8000 | \n",
" 0.897600 | \n",
" 0.244686 | \n",
" 0.247510 | \n",
" 0.051767 | \n",
"
\n",
" \n",
" 8800 | \n",
" 0.813400 | \n",
" 0.227193 | \n",
" 0.236362 | \n",
" 0.049280 | \n",
"
\n",
" \n",
" 9600 | \n",
" 0.775800 | \n",
" 0.211454 | \n",
" 0.225769 | \n",
" 0.047510 | \n",
"
\n",
" \n",
" 10400 | \n",
" 0.757200 | \n",
" 0.200528 | \n",
" 0.216522 | \n",
" 0.045622 | \n",
"
\n",
" \n",
" 11200 | \n",
" 0.729700 | \n",
" 0.194056 | \n",
" 0.210582 | \n",
" 0.044185 | \n",
"
\n",
" \n",
" 12000 | \n",
" 0.698300 | \n",
" 0.189558 | \n",
" 0.205671 | \n",
" 0.043360 | \n",
"
\n",
" \n",
" 12800 | \n",
" 0.681800 | \n",
" 0.180987 | \n",
" 0.198444 | \n",
" 0.042125 | \n",
"
\n",
" \n",
" 13600 | \n",
" 0.644600 | \n",
" 0.176266 | \n",
" 0.191612 | \n",
" 0.040599 | \n",
"
\n",
" \n",
" 14400 | \n",
" 0.645400 | \n",
" 0.167550 | \n",
" 0.188999 | \n",
" 0.040012 | \n",
"
\n",
" \n",
" 15200 | \n",
" 0.646100 | \n",
" 0.166065 | \n",
" 0.182326 | \n",
" 0.038584 | \n",
"
\n",
" \n",
" 16000 | \n",
" 0.648300 | \n",
" 0.165056 | \n",
" 0.180920 | \n",
" 0.038490 | \n",
"
\n",
" \n",
" 16800 | \n",
" 0.622600 | \n",
" 0.158542 | \n",
" 0.178583 | \n",
" 0.038353 | \n",
"
\n",
" \n",
" 17600 | \n",
" 0.602400 | \n",
" 0.152548 | \n",
" 0.174485 | \n",
" 0.037284 | \n",
"
\n",
" \n",
" 18400 | \n",
" 0.615900 | \n",
" 0.153470 | \n",
" 0.174366 | \n",
" 0.037303 | \n",
"
\n",
" \n",
" 19200 | \n",
" 0.587300 | \n",
" 0.149551 | \n",
" 0.169594 | \n",
" 0.036240 | \n",
"
\n",
" \n",
" 20000 | \n",
" 0.582300 | \n",
" 0.147552 | \n",
" 0.169594 | \n",
" 0.036146 | \n",
"
\n",
" \n",
" 20800 | \n",
" 0.541400 | \n",
" 0.145685 | \n",
" 0.167792 | \n",
" 0.035813 | \n",
"
\n",
" \n",
" 21600 | \n",
" 0.571100 | \n",
" 0.146135 | \n",
" 0.167455 | \n",
" 0.036029 | \n",
"
\n",
" \n",
" 22400 | \n",
" 0.565000 | \n",
" 0.142886 | \n",
" 0.164624 | \n",
" 0.035194 | \n",
"
\n",
" \n",
" 23200 | \n",
" 0.555500 | \n",
" 0.141050 | \n",
" 0.162901 | \n",
" 0.034871 | \n",
"
\n",
" \n",
" 24000 | \n",
" 0.522600 | \n",
" 0.140978 | \n",
" 0.162050 | \n",
" 0.034359 | \n",
"
\n",
" \n",
" 24800 | \n",
" 0.535000 | \n",
" 0.137778 | \n",
" 0.160585 | \n",
" 0.035011 | \n",
"
\n",
" \n",
" 25600 | \n",
" 0.552500 | \n",
" 0.136405 | \n",
" 0.159119 | \n",
" 0.034666 | \n",
"
\n",
" \n",
" 26400 | \n",
" 0.519000 | \n",
" 0.138575 | \n",
" 0.157397 | \n",
" 0.034004 | \n",
"
\n",
" \n",
" 27200 | \n",
" 0.522700 | \n",
" 0.132574 | \n",
" 0.159060 | \n",
" 0.034317 | \n",
"
\n",
" \n",
" 28000 | \n",
" 0.493100 | \n",
" 0.133862 | \n",
" 0.155753 | \n",
" 0.033766 | \n",
"
\n",
" \n",
" 28800 | \n",
" 0.494900 | \n",
" 0.132223 | \n",
" 0.154723 | \n",
" 0.033183 | \n",
"
\n",
" \n",
" 29600 | \n",
" 0.509100 | \n",
" 0.131310 | \n",
" 0.153535 | \n",
" 0.033147 | \n",
"
\n",
" \n",
" 30400 | \n",
" 0.487900 | \n",
" 0.128967 | \n",
" 0.150704 | \n",
" 0.032260 | \n",
"
\n",
" \n",
" 31200 | \n",
" 0.500500 | \n",
" 0.130414 | \n",
" 0.151654 | \n",
" 0.032628 | \n",
"
\n",
" \n",
"
"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-1600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-1600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-2400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-2400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-3200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-3200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-1600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-4000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-2400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-4800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-4800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-3200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-5600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-5600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-6400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-6400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-4800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-7200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-7200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-5600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-8000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-6400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-8800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-8800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-7200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-9600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-9600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-8000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-10400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-10400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-8800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-11200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-11200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-9600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-12000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-10400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-12800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-12800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-11200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-13600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-13600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-12000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-14400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-14400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-12800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-15200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-15200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-13600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-16000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-14400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-16800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-16800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-15200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-17600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-17600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-16000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-18400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-18400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-16800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-19200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-19200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-17600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-20000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-18400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-20800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-20800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-19200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-21600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-21600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-20000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-22400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-22400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-20800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-23200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-23200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-21600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-24000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-22400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-24800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-24800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-23200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-25600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-25600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-24000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-26400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-26400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-24800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-27200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-27200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-25600] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-28000\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28000/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-26400] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-28800\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-28800/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-27200] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-29600\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-29600/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-28000] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-30400\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-30400/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-28800] due to args.save_total_limit\n",
"The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 7267\n",
" Batch size = 8\n",
"Saving model checkpoint to wav2vec2-xls-r-300m-cs-250/checkpoint-31200\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/config.json\n",
"Model weights saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/pytorch_model.bin\n",
"Configuration saved in wav2vec2-xls-r-300m-cs-250/checkpoint-31200/preprocessor_config.json\n",
"Deleting older checkpoint [wav2vec2-xls-r-300m-cs-250/checkpoint-29600] due to args.save_total_limit\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/transformers/trainer.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, resume_from_checkpoint, trial, ignore_keys_for_eval, **kwargs)\u001b[0m\n\u001b[1;32m 1337\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1338\u001b[0m \u001b[0mstep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1339\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mepoch_iterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1340\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1341\u001b[0m \u001b[0;31m# Skip past any already trained steps if resuming training\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 519\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_sampler_iter\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 520\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 521\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 522\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_yielded\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 523\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dataset_kind\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0m_DatasetKind\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mIterable\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py\u001b[0m in \u001b[0;36m_next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 559\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_next_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 560\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_next_index\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 561\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_dataset_fetcher\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# may raise StopIteration\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 562\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_pin_memory\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_utils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpin_memory\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36mfetch\u001b[0;34m(self, possibly_batched_index)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfetch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_collation\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpossibly_batched_index\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 1923\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# noqa: F811\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1924\u001b[0m \u001b[0;34m\"\"\"Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools).\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1925\u001b[0;31m return self._getitem(\n\u001b[0m\u001b[1;32m 1926\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1927\u001b[0m )\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\u001b[0m in \u001b[0;36m_getitem\u001b[0;34m(self, key, decoded, **kwargs)\u001b[0m\n\u001b[1;32m 1908\u001b[0m \u001b[0mformatter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_formatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mformat_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfeatures\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeatures\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdecoded\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdecoded\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mformat_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1909\u001b[0m \u001b[0mpa_subtable\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquery_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_indices\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_indices\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1910\u001b[0;31m formatted_output = format_table(\n\u001b[0m\u001b[1;32m 1911\u001b[0m \u001b[0mpa_subtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mformatter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mformat_columns\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_all_columns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_all_columns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1912\u001b[0m )\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mformat_table\u001b[0;34m(table, key, formatter, format_columns, output_all_columns)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[0mpython_formatter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPythonFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfeatures\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 531\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mformat_columns\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 532\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mformatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mquery_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 533\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"column\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mformat_columns\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, pa_table, query_type)\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mquery_type\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mRowFormat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mColumnFormat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBatchFormat\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 280\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"row\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 281\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 282\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mquery_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"column\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mformat_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mPythonFormatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFormatter\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 309\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mformat_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 310\u001b[0;31m \u001b[0mrow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython_arrow_extractor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextract_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 311\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecoded\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[0mrow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpython_features_decoder\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdecode_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrow\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\u001b[0m in \u001b[0;36mextract_row\u001b[0;34m(self, pa_table)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mPythonArrowExtractor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mBaseArrowExtractor\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextract_row\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_unnest\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpa_table\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_pydict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mextract_column\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpa_table\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mpa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTable\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dad336a",
"metadata": {},
"outputs": [],
"source": [
"trainer.create_model_card()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ed1234c4",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "f11836c9",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}