File size: 3,566 Bytes
afd8b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# AnimateDiff Model Checkpoints for A1111 SD WebUI
This repository saves all AnimateDiff models in fp16 & safetensors format for A1111 AnimateDiff users, including
- motion module (v1-v3)
- [motion LoRA](#motion-lora) (v2 only, use like any other LoRAs)
- domain adapter (v3 only, use like any other LoRAs)
- [sparse ControlNet](#sparse-controlnet) (v3 only, use like any other ControlNets)

Unless specified below, you are fine to use models from the [official model repository](https://huggingface.co/guoyww/animatediff/tree/main). I will only convert state dict keys if absolutely necessary.


## Motion LoRA
Put motion LoRAs to `stable-diffusion-webui/models/Lora` and use motion LoRAs like any other LoRAs you use.

`lora_v2` contains motion LoRAs for AnimateDiff-A1111 v2.0.0. Old motion LoRAs won't work for v2.0.0 and later due to maintenance reason. `lora` will be removed after AnimateDiff-A1111 v2.0.0 is released to master branch.

I converted the original state dict via the following code. You may do so if you want to use a motion LoRA from community. Run the following script to make your own motion LoRA checkpoint compatible with AnimateDiff-A1111 v2.0.0 and later.
```python
import os, re, torch
import safetensors.torch

def convert_mm_name_to_compvis(key):
    sd_module_key, _, network_part = re.split(r'(_lora\.)', key)
    sd_module_key = sd_module_key.replace("processor.", "").replace("to_out", "to_out.0")
    sd_module_key = sd_module_key.replace(".", "_")
    return f'{sd_module_key}.lora_{network_part}'

file_path = # replace with path to your own old motion LoRA checkpoint
save_path = # replace with path to your own new motion LoRA checkpoint
state_dict = safetensors.torch.load_file(file_path) if file_path.endswith(".safetensors") else torch.load(file_path)
modified_dict = {convert_mm_name_to_compvis(k): v for k, v in state_dict.items()}
safetensors.torch.save_file(modified_dict, save_path)
```


## Sparse ControlNet
Put Sparse ControlNets to `stable-diffusion-webui/models/ControlNet` and use Sparse ControlNets like any other ControlNets you use.

Like Motion LoRA, I also converted state dict keys inside sparse ControlNet. Run the following script to make your own sparse ControlNet checkpoint compatible with AnimateDiff-A1111.
```python
import torch
import safetensors.torch
ad_cn_old = "v3_sd15_sparsectrl_scribble.ckpt" # replace with path to your own old sparse ControlNet checkpoint
ad_cn_new = "mm_sd15_v3_sparsectrl_scribble.safetensors" # replace with path to your own new sparse ControlNet checkpoint
normal_cn_path = "diffusion_pytorch_model.fp16.safetensors" # download https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/diffusion_pytorch_model.fp16.safetensors?download=true and replace with the path to this model
ad_cn = safetensors.torch.load_file(file_path) if file_path.endswith(".safetensors") else torch.load(ad_cn_old)
normal_cn = safetensors.torch.load_file(normal_cn_path)
ad_cn_l, ad_cn_m = {}, {}
for k in ad_cn.keys():
    if k.startswith("controlnet_cond_embedding"):
        new_key = k.replace("controlnet_cond_embedding.", "input_hint_block.0.")
        ad_cn_m[new_key] = ad_cn[k].to(torch.float16)
    elif not k in normal_cn:
        if "motion_modules" in k:
            ad_cn_m[k] = ad_cn[k].to(torch.float16)
        else:
            raise Exception(f"{k} not in normal_cn")
    else:
        ad_cn_l[k] = ad_cn[k].to(torch.float16)
ad_cn_l = convert_from_diffuser_state_dict(ad_cn_l)
ad_cn_l.update(ad_cn_m)
safetensors.torch.save_file(ad_cn_l, ad_cn_new)
```