t-tsuma commited on
Commit
0dd7d9a
1 Parent(s): df32448

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -4,7 +4,7 @@ tags: []
4
  widget:
5
  - messages:
6
  - role: user
7
- content: How does the brain work?
8
  inference:
9
  parameters:
10
  max_new_tokens: 200
@@ -58,10 +58,10 @@ Below we share some code snippets on how to get quickly started with running the
58
  ```python
59
  from transformers import AutoTokenizer, AutoModelForCausalLM
60
 
61
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
62
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
63
 
64
- input_text = "Write me a poem about Machine Learning."
65
  input_ids = tokenizer(input_text, return_tensors="pt")
66
 
67
  outputs = model.generate(**input_ids)
@@ -76,10 +76,10 @@ print(tokenizer.decode(outputs[0]))
76
  # pip install accelerate
77
  from transformers import AutoTokenizer, AutoModelForCausalLM
78
 
79
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
80
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto")
81
 
82
- input_text = "Write me a poem about Machine Learning."
83
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
84
 
85
  outputs = model.generate(**input_ids)
@@ -95,10 +95,10 @@ print(tokenizer.decode(outputs[0]))
95
  # pip install accelerate
96
  from transformers import AutoTokenizer, AutoModelForCausalLM
97
 
98
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
99
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto", torch_dtype=torch.float16)
100
 
101
- input_text = "Write me a poem about Machine Learning."
102
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
103
 
104
  outputs = model.generate(**input_ids)
@@ -111,8 +111,8 @@ print(tokenizer.decode(outputs[0]))
111
  # pip install accelerate
112
  from transformers import AutoTokenizer, AutoModelForCausalLM
113
 
114
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
115
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto", torch_dtype=torch.bfloat16)
116
 
117
  input_text = "Write me a poem about Machine Learning."
118
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
@@ -131,8 +131,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
131
 
132
  quantization_config = BitsAndBytesConfig(load_in_8bit=True)
133
 
134
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
135
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config)
136
 
137
  input_text = "Write me a poem about Machine Learning."
138
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
@@ -149,8 +149,8 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
149
 
150
  quantization_config = BitsAndBytesConfig(load_in_4bit=True)
151
 
152
- tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
153
- model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config)
154
 
155
  input_text = "Write me a poem about Machine Learning."
156
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
 
4
  widget:
5
  - messages:
6
  - role: user
7
+ content: Explain what monthly recurring revenue is.
8
  inference:
9
  parameters:
10
  max_new_tokens: 200
 
58
  ```python
59
  from transformers import AutoTokenizer, AutoModelForCausalLM
60
 
61
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
62
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct")
63
 
64
+ input_text = "Explain what churn rate is."
65
  input_ids = tokenizer(input_text, return_tensors="pt")
66
 
67
  outputs = model.generate(**input_ids)
 
76
  # pip install accelerate
77
  from transformers import AutoTokenizer, AutoModelForCausalLM
78
 
79
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
80
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct", device_map="auto")
81
 
82
+ input_text = "How is click through rate calculated."
83
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
84
 
85
  outputs = model.generate(**input_ids)
 
95
  # pip install accelerate
96
  from transformers import AutoTokenizer, AutoModelForCausalLM
97
 
98
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
99
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct", device_map="auto", torch_dtype=torch.float16)
100
 
101
+ input_text = "What is an RFM analysis?"
102
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
103
 
104
  outputs = model.generate(**input_ids)
 
111
  # pip install accelerate
112
  from transformers import AutoTokenizer, AutoModelForCausalLM
113
 
114
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
115
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct", device_map="auto", torch_dtype=torch.bfloat16)
116
 
117
  input_text = "Write me a poem about Machine Learning."
118
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
 
131
 
132
  quantization_config = BitsAndBytesConfig(load_in_8bit=True)
133
 
134
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
135
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct", quantization_config=quantization_config)
136
 
137
  input_text = "Write me a poem about Machine Learning."
138
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
 
149
 
150
  quantization_config = BitsAndBytesConfig(load_in_4bit=True)
151
 
152
+ tokenizer = AutoTokenizer.from_pretrained("core-outline/gemma-2b-instruct")
153
+ model = AutoModelForCausalLM.from_pretrained("core-outline/gemma-2b-instruct", quantization_config=quantization_config)
154
 
155
  input_text = "Write me a poem about Machine Learning."
156
  input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")