File size: 15,584 Bytes
2f7aa0c
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ea2ae030040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea2ae0261c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689716126792809862, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0xHXPiA9G71JHQ0/0xHXPiA9G71JHQ0/0xHXPiA9G71JHQ0/0xHXPiA9G71JHQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzqH/Piipyz/fR9s/n5qsv/Yxhr542aw/3Dsjv821pL9QfQg/kY6sv/rJt79JZuK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADTEdc+ID0bvUkdDT+kR4E7g822u8vvrDvTEdc+ID0bvUkdDT+kR4E7g822u8vvrDvTEdc+ID0bvUkdDT+kR4E7g822u8vvrDvTEdc+ID0bvUkdDT+kR4E7g822u8vvrDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42005786 -0.03790009  0.5512281 ]\n [ 0.42005786 -0.03790009  0.5512281 ]\n [ 0.42005786 -0.03790009  0.5512281 ]\n [ 0.42005786 -0.03790009  0.5512281 ]]", "desired_goal": "[[ 0.49928135  1.5910997   1.7131308 ]\n [-1.3484687  -0.26209992  1.3503866 ]\n [-0.63763213 -1.2867981   0.5331621 ]\n [-1.3481008  -1.4358513  -0.44218662]]", "observation": "[[ 0.42005786 -0.03790009  0.5512281   0.00394531 -0.0055787   0.00527761]\n [ 0.42005786 -0.03790009  0.5512281   0.00394531 -0.0055787   0.00527761]\n [ 0.42005786 -0.03790009  0.5512281   0.00394531 -0.0055787   0.00527761]\n [ 0.42005786 -0.03790009  0.5512281   0.00394531 -0.0055787   0.00527761]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABEZUPWPlyzsFIrM82ExSvBej3702azA94KQ7PURe2706sSA+uZpdO00zXb3ydxY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.05182458  0.00622241  0.02186681]\n [-0.0128357  -0.10919779  0.04307099]\n [ 0.04581153 -0.10711339  0.15692607]\n [ 0.00338141 -0.054004    0.14694193]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZY16iEb347+UhpRSlIwBbJRLMowBdJRHQKoRNgCwKSh1fZQoaAZoCWgPQwhwXwfOGVHrv5SGlFKUaBVLMmgWR0CqEN5zHS4OdX2UKGgGaAloD0MIGVbxRuYR5r+UhpRSlGgVSzJoFkdAqhCEdq+JxnV9lChoBmgJaA9DCF/rUiP0M9m/lIaUUpRoFUsyaBZHQKoQKfI0ZWJ1fZQoaAZoCWgPQwgpPj4hO2/iv5SGlFKUaBVLMmgWR0CqE0FK02LpdX2UKGgGaAloD0MI/MdCdAic5L+UhpRSlGgVSzJoFkdAqhLp2dNFjXV9lChoBmgJaA9DCCfeAZ60cOK/lIaUUpRoFUsyaBZHQKoSkIAOrhl1fZQoaAZoCWgPQwglyXN9H47ov5SGlFKUaBVLMmgWR0CqEje1jRUndX2UKGgGaAloD0MITWVR2EXR6L+UhpRSlGgVSzJoFkdAqhVKKYRdyHV9lChoBmgJaA9DCNR+aydKQua/lIaUUpRoFUsyaBZHQKoU8wLVnVZ1fZQoaAZoCWgPQwhLH7qgvmXav5SGlFKUaBVLMmgWR0CqFJnU2DQJdX2UKGgGaAloD0MIM6g2OBF94r+UhpRSlGgVSzJoFkdAqhQ/lS0jT3V9lChoBmgJaA9DCDZc5J6ubua/lIaUUpRoFUsyaBZHQKoXRg6U7jl1fZQoaAZoCWgPQwjLaOTziqfhv5SGlFKUaBVLMmgWR0CqFu89GI9DdX2UKGgGaAloD0MILsVVZd8V1L+UhpRSlGgVSzJoFkdAqhaVmDlHSXV9lChoBmgJaA9DCE/rNqj9lvG/lIaUUpRoFUsyaBZHQKoWOxwAEMd1fZQoaAZoCWgPQwhe9YB5yFTwv5SGlFKUaBVLMmgWR0CqGTpAD7qIdX2UKGgGaAloD0MIS1tc4zPZ3r+UhpRSlGgVSzJoFkdAqhji37UG3XV9lChoBmgJaA9DCC3RWWYRiuC/lIaUUpRoFUsyaBZHQKoYiWMS9M91fZQoaAZoCWgPQwhnutdJfVnkv5SGlFKUaBVLMmgWR0CqGC8tPHktdX2UKGgGaAloD0MIeqpDboYb6b+UhpRSlGgVSzJoFkdAqhtiGnGbTnV9lChoBmgJaA9DCKH0hZDz/t6/lIaUUpRoFUsyaBZHQKobCddVvMt1fZQoaAZoCWgPQwibdFsiFxzuv5SGlFKUaBVLMmgWR0CqGq8LBsQ/dX2UKGgGaAloD0MIgUI9fQT+6b+UhpRSlGgVSzJoFkdAqhpUEovzv3V9lChoBmgJaA9DCE1LrIxGPti/lIaUUpRoFUsyaBZHQKochgccU/R1fZQoaAZoCWgPQwgiGXJsPUPdv5SGlFKUaBVLMmgWR0CqHC23jMmndX2UKGgGaAloD0MIV8wIbw9C57+UhpRSlGgVSzJoFkdAqhvTGza9K3V9lChoBmgJaA9DCN/dyhKdZd6/lIaUUpRoFUsyaBZHQKobd4qPOpt1fZQoaAZoCWgPQwi54uKo3ETav5SGlFKUaBVLMmgWR0CqHaDVYp2EdX2UKGgGaAloD0MI4JwRpb3B3b+UhpRSlGgVSzJoFkdAqh1IePq9oXV9lChoBmgJaA9DCH+jHTf8buG/lIaUUpRoFUsyaBZHQKoc7bblA/t1fZQoaAZoCWgPQwiL4eoAiDvnv5SGlFKUaBVLMmgWR0CqHJJN9H+ZdX2UKGgGaAloD0MIzuDvF7Ol4r+UhpRSlGgVSzJoFkdAqh7COq//N3V9lChoBmgJaA9DCG8RGOsbmOG/lIaUUpRoFUsyaBZHQKoeadvKlpJ1fZQoaAZoCWgPQwg/NV66SQzjv5SGlFKUaBVLMmgWR0CqHg845tFbdX2UKGgGaAloD0MIEf5F0JjJ5r+UhpRSlGgVSzJoFkdAqh2zqQiiZnV9lChoBmgJaA9DCAiwyK8fYtO/lIaUUpRoFUsyaBZHQKof3t2LYPJ1fZQoaAZoCWgPQwgE/1vJjg3rv5SGlFKUaBVLMmgWR0CqH4aErXlKdX2UKGgGaAloD0MI176AXrhz17+UhpRSlGgVSzJoFkdAqh8r1bqyGHV9lChoBmgJaA9DCLdDw2LUtfO/lIaUUpRoFUsyaBZHQKoe0FmnO0N1fZQoaAZoCWgPQwhQ3zKny2Lov5SGlFKUaBVLMmgWR0CqIQGTcIqtdX2UKGgGaAloD0MItAWE1sMX57+UhpRSlGgVSzJoFkdAqiCpUedTYXV9lChoBmgJaA9DCAIrhxbZzuu/lIaUUpRoFUsyaBZHQKogTshPj4p1fZQoaAZoCWgPQwjYYrfPKjPjv5SGlFKUaBVLMmgWR0CqH/NSQ5mzdX2UKGgGaAloD0MISu1FtB1T47+UhpRSlGgVSzJoFkdAqiIkF+uvEHV9lChoBmgJaA9DCEj6tIr+0Nu/lIaUUpRoFUsyaBZHQKohy+g13t91fZQoaAZoCWgPQwiRmKCGb+Hkv5SGlFKUaBVLMmgWR0CqIXFIEr5JdX2UKGgGaAloD0MIrweT4uMT7b+UhpRSlGgVSzJoFkdAqiEV4JNTLnV9lChoBmgJaA9DCAw9YvTcQue/lIaUUpRoFUsyaBZHQKojSDyvs7d1fZQoaAZoCWgPQwiif4KLFTXZv5SGlFKUaBVLMmgWR0CqIu/zasZHdX2UKGgGaAloD0MICTNt/8pK4b+UhpRSlGgVSzJoFkdAqiKVdZ7ojnV9lChoBmgJaA9DCDm3CffKvO2/lIaUUpRoFUsyaBZHQKoiOg00m+l1fZQoaAZoCWgPQwgcCp+tgwPgv5SGlFKUaBVLMmgWR0CqJGXZwn6VdX2UKGgGaAloD0MIGY7nM6Be4r+UhpRSlGgVSzJoFkdAqiQNga3qiXV9lChoBmgJaA9DCCtNSkG3l+2/lIaUUpRoFUsyaBZHQKojstmL9/B1fZQoaAZoCWgPQwgNbJVgcTjjv5SGlFKUaBVLMmgWR0CqI1djgAIZdX2UKGgGaAloD0MIB5YjZCDP7r+UhpRSlGgVSzJoFkdAqiWbYf4h2XV9lChoBmgJaA9DCLCQuTKotuC/lIaUUpRoFUsyaBZHQKolQzAvcrR1fZQoaAZoCWgPQwhkdavnpPfbv5SGlFKUaBVLMmgWR0CqJOiFj/dZdX2UKGgGaAloD0MIgXueP23U5b+UhpRSlGgVSzJoFkdAqiSNyBClanV9lChoBmgJaA9DCE33Oqkvy+q/lIaUUpRoFUsyaBZHQKom00zCUHJ1fZQoaAZoCWgPQwjDLLRzmgXXv5SGlFKUaBVLMmgWR0CqJnsByS3cdX2UKGgGaAloD0MIb7iP3Jr05b+UhpRSlGgVSzJoFkdAqiYgX2ugYnV9lChoBmgJaA9DCDD2XnzRnuq/lIaUUpRoFUsyaBZHQKolxN6gM+h1fZQoaAZoCWgPQwhV3SObqybwv5SGlFKUaBVLMmgWR0CqJ/hE8aGYdX2UKGgGaAloD0MIVn4ZjBGJ1r+UhpRSlGgVSzJoFkdAqief9ehPCXV9lChoBmgJaA9DCNF0djI4Su6/lIaUUpRoFUsyaBZHQKonRVKf4AV1fZQoaAZoCWgPQwhZiXlW0grov5SGlFKUaBVLMmgWR0CqJupKJ2t/dX2UKGgGaAloD0MIJ/bQPlbw5r+UhpRSlGgVSzJoFkdAqilbbL2YfHV9lChoBmgJaA9DCN3QlJ1+UOa/lIaUUpRoFUsyaBZHQKopA5vLowF1fZQoaAZoCWgPQwgBMJ5BQ//qv5SGlFKUaBVLMmgWR0CqKKj3Ehq1dX2UKGgGaAloD0MIOXtntFXJ4L+UhpRSlGgVSzJoFkdAqihNf1Hvt3V9lChoBmgJaA9DCLN78rBQ6+a/lIaUUpRoFUsyaBZHQKoqfZbILgJ1fZQoaAZoCWgPQwjpJ5zdWiblv5SGlFKUaBVLMmgWR0CqKiU70WdmdX2UKGgGaAloD0MIILOz6J0K6b+UhpRSlGgVSzJoFkdAqinKiKziTHV9lChoBmgJaA9DCOFGyhZJu+q/lIaUUpRoFUsyaBZHQKopbxHXmNl1fZQoaAZoCWgPQwi7Cb5p+mziv5SGlFKUaBVLMmgWR0CqK5heHBUJdX2UKGgGaAloD0MIsoF0sWml57+UhpRSlGgVSzJoFkdAqitASDh99nV9lChoBmgJaA9DCETecvVjk+O/lIaUUpRoFUsyaBZHQKoq5fyf+S91fZQoaAZoCWgPQwgdIm5OJQPrv5SGlFKUaBVLMmgWR0CqKop8fFJhdX2UKGgGaAloD0MIppvEILBy6L+UhpRSlGgVSzJoFkdAqiyvu5SWJXV9lChoBmgJaA9DCDtvY7Mj1d+/lIaUUpRoFUsyaBZHQKosV09QoCx1fZQoaAZoCWgPQwhAwjBgyVXjv5SGlFKUaBVLMmgWR0CqK/ydnTRZdX2UKGgGaAloD0MI1zGuuDiq4r+UhpRSlGgVSzJoFkdAqiuhDgIhQnV9lChoBmgJaA9DCGjKTj+oi+y/lIaUUpRoFUsyaBZHQKotvt78ejp1fZQoaAZoCWgPQwg8pYP1fw7xv5SGlFKUaBVLMmgWR0CqLWaEal1sdX2UKGgGaAloD0MI2nHD76Zb4r+UhpRSlGgVSzJoFkdAqi0Lz5GjK3V9lChoBmgJaA9DCNBjlGdeDuu/lIaUUpRoFUsyaBZHQKossEZiuuB1fZQoaAZoCWgPQwiXHHdKB+vZv5SGlFKUaBVLMmgWR0CqLttUOuq4dX2UKGgGaAloD0MIbOwS1VsD27+UhpRSlGgVSzJoFkdAqi6DFfiPyXV9lChoBmgJaA9DCKpIhbGFoOS/lIaUUpRoFUsyaBZHQKouKHzH0bt1fZQoaAZoCWgPQwjpRIKpZlbqv5SGlFKUaBVLMmgWR0CqLc0HyEtedX2UKGgGaAloD0MICvg1kgQh8L+UhpRSlGgVSzJoFkdAqjCr0OEuhHV9lChoBmgJaA9DCAxZ3eo56eS/lIaUUpRoFUsyaBZHQKowVHn2ZiN1fZQoaAZoCWgPQwg49YHknUPsv5SGlFKUaBVLMmgWR0CqL/rqUu+RdX2UKGgGaAloD0MIE0n0Morlzr+UhpRSlGgVSzJoFkdAqi+gKneiz3V9lChoBmgJaA9DCChgOxixT/G/lIaUUpRoFUsyaBZHQKoynAwfyPN1fZQoaAZoCWgPQwhGDDuMSf/mv5SGlFKUaBVLMmgWR0CqMkRgqmTDdX2UKGgGaAloD0MIqIx/n3Fh7r+UhpRSlGgVSzJoFkdAqjHqpT/ACXV9lChoBmgJaA9DCAd6qG3DKOa/lIaUUpRoFUsyaBZHQKoxkBoVVPx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}