File size: 1,569 Bytes
f8d6c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import sys


class Conv2d(nn.Module):
    def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, D=1, activation=nn.ReLU()):
        super(Conv2d, self).__init__()
        if activation:
            self.conv = nn.Sequential(
                nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=padding, dilation=D),
                activation
            )
        else:
            self.conv = nn.Sequential(
                nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=padding, dilation=D)
            )

    def forward(self, x):
        x = self.conv(x)
        return x
        
def init_He(module):
    for m in module.modules():
        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1)
            nn.init.constant_(m.bias, 0)

def pad_divide_by(in_list, d, in_size):
    out_list = []
    h, w = in_size
    if h % d > 0:
        new_h = h + d - h % d
    else:
        new_h = h
    if w % d > 0:
        new_w = w + d - w % d
    else:
        new_w = w
    lh, uh = int((new_h-h) / 2), int(new_h-h) - int((new_h-h) / 2)
    lw, uw = int((new_w-w) / 2), int(new_w-w) - int((new_w-w) / 2)
    pad_array = (int(lw), int(uw), int(lh), int(uh))
    for inp in in_list:
        out_list.append(F.pad(inp, pad_array))
    return out_list, pad_array