File size: 8,510 Bytes
6721043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import numpy as np
import torch.nn.functional as F
import cv2
def padding_4x(seq_noise):
    sh_im = seq_noise.size()
    expanded_h = sh_im[-2]%16

    if expanded_h:
        expanded_h = 16-expanded_h
    expanded_w = sh_im[-1]%16
    if expanded_w:
        expanded_w = 16-expanded_w

    padexp = (0, expanded_w, 0, expanded_h)
    seq_noise = F.pad(input=seq_noise, pad=padexp, mode='reflect')
    return seq_noise, expanded_h, expanded_w

def depadding(seq_denoise,expanded_h, expanded_w):
    if expanded_h:
        seq_denoise = seq_denoise[:, :, :-expanded_h, :]
    if expanded_w:
        seq_denoise = seq_denoise[:, :, :, :-expanded_w]
    return seq_denoise
def chunkV3(net, input_data, option, patch_h = 516, patch_w = 516, patch_h_overlap = 16, patch_w_overlap = 16):
    #input_data  [1,6,4,1500, 2000]

    # H = input_data.shape[3]
    # W = input_data.shape[4]

    shape_list = input_data.shape

    if option == 'image':
        B, C, H, W = shape_list[0], shape_list[1], shape_list[2], shape_list[3]                   # 1,4,1500,2000
    if option == 'RViDeformer':
        B, F, C, H, W = shape_list[0], shape_list[1], shape_list[2], shape_list[3], shape_list[4] # 1,6, 4,1500,2000
    if option == 'three2one':
        B, FC , H, W = shape_list[0], shape_list[1], shape_list[2], shape_list[3]                # 1,12,1500,2000
    
    if option == 'image':
        test_result = torch.zeros_like(input_data).cpu()  # 和input的shape一样
    if option == 'RViDeformer':
        test_result = torch.zeros_like(input_data).cpu()  # 和input的shape一样
    if option == 'three2one':
        test_result = torch.zeros((B, 4 , H, W)).cpu()  # 和input的shape一样


    # t0 = time.perf_counter()
    h_index = 1
    while (patch_h*h_index-patch_h_overlap*(h_index-1)) < H:
        if option == 'image':
            test_horizontal_result = torch.zeros((B,C,patch_h,W)).cpu()  #和input的shape一样 patch_h不一样
        if option == 'RViDeformer':
            test_horizontal_result = torch.zeros((B, F, C, patch_h, W)).cpu()
        if option == 'three2one':
            test_horizontal_result = torch.zeros((B, 4, patch_h, W)).cpu()

        h_begin = patch_h*(h_index-1)-patch_h_overlap*(h_index-1)
        h_end = patch_h*h_index-patch_h_overlap*(h_index-1) 
        w_index = 1
        while (patch_w*w_index-patch_w_overlap*(w_index-1)) < W:
            w_begin = patch_w*(w_index-1)-patch_w_overlap*(w_index-1)
            w_end = patch_w*w_index-patch_w_overlap*(w_index-1)
            test_patch = input_data[...,h_begin:h_end,w_begin:w_end]        

            with torch.no_grad():
                test_patch_result = net(test_patch).detach().cpu()

            if w_index == 1:
                test_horizontal_result[...,w_begin:w_end] = test_patch_result
            else:
                for i in range(patch_w_overlap):
                    test_horizontal_result[...,w_begin+i] = test_horizontal_result[...,w_begin+i]*(patch_w_overlap-1-i)/(patch_w_overlap-1)+test_patch_result[...,i]*i/(patch_w_overlap-1)
                test_horizontal_result[...,w_begin+patch_w_overlap:w_end] = test_patch_result[...,patch_w_overlap:]
            w_index += 1                   
    
        test_patch = input_data[...,h_begin:h_end,-patch_w:]        

        with torch.no_grad():
            test_patch_result = net(test_patch).detach().cpu()
        last_range = w_end-(W-patch_w)       

        for i in range(last_range):
            test_horizontal_result[...,W-patch_w+i] = test_horizontal_result[...,W-patch_w+i]*(last_range-1-i)/(last_range-1)+test_patch_result[...,i]*i/(last_range-1)
        test_horizontal_result[...,w_end:] = test_patch_result[...,last_range:]       

        if h_index == 1:
            test_result[...,h_begin:h_end,:] = test_horizontal_result
        else:
            for i in range(patch_h_overlap):
                test_result[...,h_begin+i,:] = test_result[...,h_begin+i,:]*(patch_h_overlap-1-i)/(patch_h_overlap-1)+test_horizontal_result[...,i,:]*i/(patch_h_overlap-1)
            test_result[...,h_begin+patch_h_overlap:h_end,:] = test_horizontal_result[...,patch_h_overlap:,:] 
        h_index += 1

    if option == 'image':
        test_horizontal_result = torch.zeros((B,C,patch_h,W)).cpu()  #和input的shape一样 patch_h不一样
    if option == 'RViDeformer':
        test_horizontal_result = torch.zeros((B, F, C, patch_h, W)).cpu()
    if option == 'three2one':
        test_horizontal_result = torch.zeros((B, 4, patch_h, W)).cpu()
        
    w_index = 1
    while (patch_w*w_index-patch_w_overlap*(w_index-1)) < W:
        w_begin = patch_w*(w_index-1)-patch_w_overlap*(w_index-1)
        w_end = patch_w*w_index-patch_w_overlap*(w_index-1)
        test_patch = input_data[...,-patch_h:,w_begin:w_end]            
              
        with torch.no_grad():
            test_patch_result = net(test_patch).detach().cpu()

        if w_index == 1:
            test_horizontal_result[...,w_begin:w_end] = test_patch_result
        else:
            for i in range(patch_w_overlap):
                test_horizontal_result[...,w_begin+i] = test_horizontal_result[...,w_begin+i]*(patch_w_overlap-1-i)/(patch_w_overlap-1)+test_patch_result[...,i]*i/(patch_w_overlap-1)
            test_horizontal_result[...,w_begin+patch_w_overlap:w_end] = test_patch_result[...,patch_w_overlap:]   
        w_index += 1

    test_patch = input_data[...,-patch_h:,-patch_w:]         

    with torch.no_grad():
        test_patch_result = net(test_patch).detach().cpu()
    last_range = w_end-(W-patch_w)       
    for i in range(last_range):
        test_horizontal_result[...,W-patch_w+i] = test_horizontal_result[...,W-patch_w+i]*(last_range-1-i)/(last_range-1)+test_patch_result[...,i]*i/(last_range-1) 
    test_horizontal_result[...,w_end:] = test_patch_result[...,last_range:] 

    last_last_range = h_end-(H-patch_h)
    for i in range(last_last_range):
        test_result[...,H-patch_w+i,:] = test_result[...,H-patch_w+i,:]*(last_last_range-1-i)/(last_last_range-1)+test_horizontal_result[...,i,:]*i/(last_last_range-1)
    test_result[...,h_end:,:] = test_horizontal_result[...,last_last_range:,:]
   
    # t1 = time.perf_counter()
    # print('Total running time: %s s' % (str(t1 - t0)))

    return test_result


def calculate_psnr(img, img2, input_order='HWC'):


    assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"')
    
    img = img.transpose(1, 2, 0)
    img2 = img2.transpose(1, 2, 0)


    img = img.astype(np.float64)
    img2 = img2.astype(np.float64)

    mse = np.mean((img - img2)**2)
    if mse == 0:
        return float('inf')
    return 10. * np.log10(1. * 1. / mse)


def calculate_ssim(img, img2, input_order='HWC'):


    assert img.shape == img2.shape, (f'Image shapes are different: {img.shape}, {img2.shape}.')
    if input_order not in ['HWC', 'CHW']:
        raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are "HWC" and "CHW"')


    img = img.transpose(1, 2, 0)
    img2 = img2.transpose(1, 2, 0)


    img = img.astype(np.float64)
    img2 = img2.astype(np.float64)

    ssims = []
    for i in range(img.shape[2]):
        ssims.append(_ssim(img[..., i], img2[..., i]))
    return np.array(ssims).mean()
    
def _ssim(img, img2):
    """Calculate SSIM (structural similarity) for one channel images.

    It is called by func:`calculate_ssim`.

    Args:
        img (ndarray): Images with range [0, 255] with order 'HWC'.
        img2 (ndarray): Images with range [0, 255] with order 'HWC'.

    Returns:
        float: SSIM result.
    """

    c1 = (0.01 * 1)**2
    c2 = (0.03 * 1)**2
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img, -1, window)[5:-5, 5:-5]  # valid mode for window size 11
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + c1) * (2 * sigma12 + c2)) / ((mu1_sq + mu2_sq + c1) * (sigma1_sq + sigma2_sq + c2))
    return ssim_map.mean()