File size: 42,408 Bytes
6721043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
# =============================================================
# This file contains helper functions and classes
#
# Mushfiqul Alam, 2017
#
# Report bugs/suggestions:
#   mushfiqulalam@gmail.com
# =============================================================

import png
import numpy as np
import scipy.misc
import math
from scipy import signal        # for convolutions
from scipy import ndimage       # for n-dimensional convolution
from scipy import interpolate

# =============================================================
# function: imsave
#   save image in image formats
#   data:   is the image data
#   output_dtype: output data type
#   input_dtype: input data type
#   is_scale: is scaling needed to go from input data type to output data type
# =============================================================
def imsave(data, output_name, output_dtype="uint8", input_dtype="uint8", is_scale=False):

    dtype_dictionary = {"uint8" : np.uint8(data), "uint16" : np.uint16(data),\
                        "uint32" : np.uint32(data), "uint64" : np.uint64(data),\
                        "int8" : np.int8(data), "int16" : np.int16(data),\
                        "int32" : np.int32(data), "int64" : np.int64(data),\
                        "float16" : np.float16(data), "float32" : np.float32(data),\
                        "float64" : np.float64(data)}

    min_val_dictionary = {"uint8" : 0, "uint16" : 0,\
                          "uint32" : 0, "uint64" : 0,\
                          "int8" : -128, "int16" : -32768,\
                          "int32" : -2147483648, "int64" : -9223372036854775808}

    max_val_dictionary = {"uint8" : 255, "uint16" : 65535,\
                          "uint32" : 4294967295, "uint64" : 18446744073709551615,\
                          "int8" : 127, "int16" : 32767,\
                          "int32" : 2147483647, "int64" : 9223372036854775807}

    # scale the data in case scaling is necessary to go from input_dtype
    # to output_dtype
    if (is_scale):

        # convert data into float32
        data = np.float32(data)

        # Get minimum and maximum value of the input and output data types
        in_min  = min_val_dictionary[input_dtype]
        in_max  = max_val_dictionary[input_dtype]
        out_min = min_val_dictionary[output_dtype]
        out_max = max_val_dictionary[output_dtype]

        # clip the input data in the input_dtype range
        data = np.clip(data, in_min, in_max)

        # scale the data
        data = out_min + (data - in_min) * (out_max - out_min) / (in_max - in_min)

        # clip scaled data in output_dtype range
        data = np.clip(data, out_min, out_max)

    # convert the data into the output_dtype
    data = dtype_dictionary[output_dtype]

    # output image type: raw, png, jpeg
    output_file_type = output_name[-3:]

    # save files depending on output_file_type
    if (output_file_type == "raw"):
        pass # will be added later
        return

    elif (output_file_type == "png"):

        # png will only save uint8 or uint16
        if ((output_dtype == "uint16") or (output_dtype == "uint8")):
            if (output_dtype == "uint16"):
                output_bitdepth = 16
            elif (output_dtype == "uint8"):
                output_bitdepth = 8

            pass
        else:
            print("For png output, output_dtype must be uint8 or uint16")
            return

        with open(output_name, "wb") as f:
            # rgb image
            if (np.ndim(data) == 3):
                # create the png writer
                writer = png.Writer(width=data.shape[1], height=data.shape[0],\
                                    bitdepth = output_bitdepth)
                # convert data to the python lists expected by the png Writer
                data2list = data.reshape(-1, data.shape[1]*data.shape[2]).tolist()
                # write in the file
                writer.write(f, data2list)

            # greyscale image
            elif (np.ndim(data) == 2):
                # create the png writer
                writer = png.Writer(width=data.shape[1], height=data.shape[0],\
                                    bitdepth = output_bitdepth,\
                                    greyscale = True)
                # convert data to the python lists expected by the png Writer
                data2list = data.tolist()
                # write in the file
                writer.write(f, data2list)

    elif (output_file_type == "jpg"):
        pass # will be added later
        return

    else:
        print("output_name should contain extensions of .raw, .png, or .jpg")
        return


# =============================================================
# class: helpers
#   a class of useful helper functions
# =============================================================
class helpers:
    def __init__(self, data=None, name="helper"):
        self.data = np.float32(data)
        self.name = name

    def get_width_height(self):
        #------------------------------------------------------
        # returns width, height
        # We assume data be in height x width x number of channel x frames format
        #------------------------------------------------------
        if (np.ndim(self.data) > 1):
            size = np.shape(self.data)
            width = size[1]
            height = size[0]
            return width, height
        else:
            print("Error! data dimension must be 2 or greater")

    def bayer_channel_separation(self, pattern):
        #------------------------------------------------------
        # function: bayer_channel_separation
        #   Objective: Outputs four channels of the bayer pattern
        #   Input:
        #       data:   the bayer data
        #       pattern:    rggb, grbg, gbrg, or bggr
        #   Output:
        #       R, G1, G2, B (Quarter resolution images)
        #------------------------------------------------------
        if (pattern == "rggb"):
            R = self.data[::2, ::2]
            G1 = self.data[::2, 1::2]
            G2 = self.data[1::2, ::2]
            B = self.data[1::2, 1::2]
        elif (pattern == "grbg"):
            G1 = self.data[::2, ::2]
            R = self.data[::2, 1::2]
            B = self.data[1::2, ::2]
            G2 = self.data[1::2, 1::2]
        elif (pattern == "gbrg"):
            G1 = self.data[::2, ::2]
            B = self.data[::2, 1::2]
            R = self.data[1::2, ::2]
            G2 = self.data[1::2, 1::2]
        elif (pattern == "bggr"):
            B = self.data[::2, ::2]
            G1 = self.data[::2, 1::2]
            G2 = self.data[1::2, ::2]
            R = self.data[1::2, 1::2]
        else:
            print("pattern must be one of these: rggb, grbg, gbrg, bggr")
            return

        return R, G1, G2, B


    def bayer_channel_integration(self, R, G1, G2, B, pattern):
        #------------------------------------------------------
        # function: bayer_channel_integration
        #   Objective: combine data into a raw according to pattern
        #   Input:
        #       R, G1, G2, B:   the four separate channels (Quarter resolution)
        #       pattern:    rggb, grbg, gbrg, or bggr
        #   Output:
        #       data (Full resolution image)
        #------------------------------------------------------
        size = np.shape(R)
        data = np.empty((size[0]*2, size[1]*2), dtype=np.float32)
        if (pattern == "rggb"):
            data[::2, ::2] = R
            data[::2, 1::2] = G1
            data[1::2, ::2] = G2
            data[1::2, 1::2] = B
        elif (pattern == "grbg"):
            data[::2, ::2] = G1
            data[::2, 1::2] = R
            data[1::2, ::2] = B
            data[1::2, 1::2] = G2
        elif (pattern == "gbrg"):
            data[::2, ::2] = G1
            data[::2, 1::2] = B
            data[1::2, ::2] = R
            data[1::2, 1::2] = G2
        elif (pattern == "bggr"):
            data[::2, ::2] = B
            data[::2, 1::2] = G1
            data[1::2, ::2] = G2
            data[1::2, 1::2] = R
        else:
            print("pattern must be one of these: rggb, grbg, gbrg, bggr")
            return

        return data


    def shuffle_bayer_pattern(self, input_pattern, output_pattern):
        #------------------------------------------------------
        # function: shuffle_bayer_pattern
        #   convert from one bayer pattern to another
        #------------------------------------------------------

        # Get separate channels
        R, G1, G2, B = self.bayer_channel_separation(input_pattern)

        # return integrated data
        return self.bayer_channel_integration(R, G1, G2, B, output_pattern)


    def sigma_filter_helper(self, neighborhood_size, sigma):

        if (neighborhood_size % 2) == 0:
            print("Error! neighborhood_size must be odd for example 3, 5, 7")
            return

        # number of pixels to be padded at the borders
        no_of_pixel_pad = math.floor(neighborhood_size / 2.)

        # get width, height
        width, height = self.get_width_height()

        # pad pixels at the borders
        img = np.pad(self.data, \
                     (no_of_pixel_pad, no_of_pixel_pad),\
                     'reflect') # reflect would not repeat the border value

        # allocate memory for output
        output = np.empty((height, width), dtype=np.float32)

        for i in range(no_of_pixel_pad, height + no_of_pixel_pad):
            for j in range(no_of_pixel_pad, width + no_of_pixel_pad):

                # save the middle pixel value
                mid_pixel_val = img[i, j]

                # extract the neighborhood
                neighborhood = img[i - no_of_pixel_pad : i + no_of_pixel_pad+1,\
                                   j - no_of_pixel_pad : j + no_of_pixel_pad+1]

                lower_range = mid_pixel_val - sigma
                upper_range = mid_pixel_val + sigma

                temp = 0.
                ctr = 0
                for ni in range (0, neighborhood_size):
                    for nj in range (0, neighborhood_size):
                        if (neighborhood[ni, nj] > lower_range) and (neighborhood[ni, nj] < upper_range):
                            temp += neighborhood[ni, nj]
                            ctr += 1

                output[i - no_of_pixel_pad, j - no_of_pixel_pad] = temp / ctr

        return output

    def bilinear_interpolation(self, x, y):

        width, height = self.get_width_height()

        x0 = np.floor(x).astype(int)
        x1 = x0 + 1
        y0 = np.floor(y).astype(int)
        y1 = y0 + 1

        x0 = np.clip(x0, 0, width-1)
        x1 = np.clip(x1, 0, width-1)
        y0 = np.clip(y0, 0, height-1)
        y1 = np.clip(y1, 0, height-1)

        Ia = self.data[y0, x0]
        Ib = self.data[y1, x0]
        Ic = self.data[y0, x1]
        Id = self.data[y1, x1]


        x = np.clip(x, 0, width-1)
        y = np.clip(y, 0, height-1)

        wa = (x1 - x) * (y1 - y)
        wb = (x1 - x) * (y - y0)
        wc = (x - x0) * (y1 - y)
        wd = (x - x0) * (y - y0)

        return wa * Ia + wb * Ib + wc * Ic + wd * Id

    def degamma_srgb(self, clip_range=[0, 65535]):

        # bring data in range 0 to 1
        data = np.clip(self.data, clip_range[0], clip_range[1])
        data = np.divide(data, clip_range[1])

        data = np.asarray(data)
        mask = data > 0.04045

        # basically, if data[x, y, c] > 0.04045, data[x, y, c] = ( (data[x, y, c] + 0.055) / 1.055 ) ^ 2.4
        #            else, data[x, y, c] = data[x, y, c] / 12.92
        data[mask] += 0.055
        data[mask] /= 1.055
        data[mask] **= 2.4

        data[np.invert(mask)] /= 12.92

        # rescale
        return np.clip(data * clip_range[1], clip_range[0], clip_range[1])

    def gamma_srgb(self, clip_range=[0, 65535]):

        # bring data in range 0 to 1
        data = np.clip(self.data, clip_range[0], clip_range[1])
        data = np.divide(data, clip_range[1])

        data = np.asarray(data)
        mask = data > 0.0031308

        # basically, if data[x, y, c] > 0.0031308, data[x, y, c] = 1.055 * ( var_R(i, j) ^ ( 1 / 2.4 ) ) - 0.055
        #            else, data[x, y, c] = data[x, y, c] * 12.92
        data[mask] **= 0.4167
        data[mask] *= 1.055
        data[mask] -= 0.055

        data[np.invert(mask)] *= 12.92

        # rescale
        return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


    def degamma_adobe_rgb_1998(self, clip_range=[0, 65535]):

        # bring data in range 0 to 1
        data = np.clip(self.data, clip_range[0], clip_range[1])
        data = np.divide(data, clip_range[1])

        data = np.power(data, 2.2) # originally raised to 2.19921875

        # rescale
        return np.clip(data * clip_range[1], clip_range[0], clip_range[1])

    def gamma_adobe_rgb_1998(self, clip_range=[0, 65535]):

        # bring data in range 0 to 1
        data = np.clip(self.data, clip_range[0], clip_range[1])
        data = np.divide(data, clip_range[1])

        data = np.power(data, 0.4545)

        # rescale
        return np.clip(data * clip_range[1], clip_range[0], clip_range[1])


    def get_xyz_reference(self, cie_version="1931", illuminant="d65"):

        if (cie_version == "1931"):

            xyz_reference_dictionary = {"A" : [109.850, 100.0, 35.585],\
                                        "B" : [99.0927, 100.0, 85.313],\
                                        "C" : [98.074,  100.0, 118.232],\
                                        "d50" : [96.422, 100.0, 82.521],\
                                        "d55" : [95.682, 100.0, 92.149],\
                                        "d65" : [95.047, 100.0, 108.883],\
                                        "d75" : [94.972, 100.0, 122.638],\
                                        "E" : [100.0, 100.0, 100.0],\
                                        "F1" : [92.834, 100.0, 103.665],\
                                        "F2" : [99.187, 100.0, 67.395],\
                                        "F3" : [103.754, 100.0, 49.861],\
                                        "F4" : [109.147, 100.0, 38.813],\
                                        "F5" : [90.872, 100.0, 98.723],\
                                        "F6" : [97.309, 100.0, 60.191],\
                                        "F7" : [95.044, 100.0, 108.755],\
                                        "F8" : [96.413, 100.0, 82.333],\
                                        "F9" : [100.365, 100.0, 67.868],\
                                        "F10" : [96.174, 100.0, 81.712],\
                                        "F11" : [100.966, 100.0, 64.370],\
                                        "F12" : [108.046, 100.0, 39.228]}

        elif (cie_version == "1964"):

            xyz_reference_dictionary = {"A" : [111.144, 100.0, 35.200],\
                                        "B" : [99.178, 100.0, 84.3493],\
                                        "C" : [97.285, 100.0, 116.145],\
                                        "D50" : [96.720, 100.0, 81.427],\
                                        "D55" : [95.799, 100.0, 90.926],\
                                        "D65" : [94.811, 100.0, 107.304],\
                                        "D75" : [94.416, 100.0, 120.641],\
                                        "E" : [100.0, 100.0, 100.0],\
                                        "F1" : [94.791, 100.0, 103.191],\
                                        "F2" : [103.280, 100.0, 69.026],\
                                        "F3" : [108.968, 100.0, 51.965],\
                                        "F4" : [114.961, 100.0, 40.963],\
                                        "F5" : [93.369, 100.0, 98.636],\
                                        "F6" : [102.148, 100.0, 62.074],\
                                        "F7" : [95.792, 100.0, 107.687],\
                                        "F8" : [97.115, 100.0, 81.135],\
                                        "F9" : [102.116, 100.0, 67.826],\
                                        "F10" : [99.001, 100.0, 83.134],\
                                        "F11" : [103.866, 100.0, 65.627],\
                                        "F12" : [111.428, 100.0, 40.353]}

        else:
            print("Warning! cie_version must be 1931 or 1964.")
            return

        return np.divide(xyz_reference_dictionary[illuminant], 100.0)

    def sobel_prewitt_direction_label(self, gradient_magnitude, theta, threshold=0):

        direction_label = np.zeros(np.shape(gradient_magnitude), dtype=np.float32)

        theta = np.asarray(theta)
        # vertical
        mask = ((theta >= -22.5) & (theta <= 22.5))
        direction_label[mask] = 3.

        # +45 degree
        mask = ((theta > 22.5) & (theta <= 67.5))
        direction_label[mask] = 2.

        # -45 degree
        mask = ((theta < -22.5) & (theta >= -67.5))
        direction_label[mask] = 4.

        # horizontal
        mask = ((theta > 67.5) & (theta <= 90.)) | ((theta < -67.5) & (theta >= -90.))
        direction_label[mask] = 1.

        gradient_magnitude = np.asarray(gradient_magnitude)
        mask = gradient_magnitude < threshold
        direction_label[mask] = 0.

        return direction_label

    def edge_wise_median(self, kernel_size, edge_location):

        # pad two pixels at the border
        no_of_pixel_pad = math.floor(kernel_size / 2)   # number of pixels to pad

        data = self.data
        data = np.pad(data, \
                      (no_of_pixel_pad, no_of_pixel_pad),\
                      'reflect') # reflect would not repeat the border value

        edge_location = np.pad(edge_location,\
                              (no_of_pixel_pad, no_of_pixel_pad),\
                              'reflect') # reflect would not repeat the border value

        width, height = self.get_width_height()
        output = np.empty((height, width), dtype=np.float32)

        for i in range(no_of_pixel_pad, height + no_of_pixel_pad):
            for j in range(no_of_pixel_pad, width + no_of_pixel_pad):
                if (edge_location[i, j] == 1):
                    output[i - no_of_pixel_pad, j - no_of_pixel_pad] = \
                                 np.median(data[i - no_of_pixel_pad : i + no_of_pixel_pad + 1,\
                                                j - no_of_pixel_pad : j + no_of_pixel_pad + 1])
                elif (edge_location[i, j] == 0):
                    output[i - no_of_pixel_pad, j - no_of_pixel_pad] = data[i, j]

        return output


    def nonuniform_quantization(self):

        output = np.zeros(np.shape(self.data), dtype=np.float32)
        min_val = np.min(self.data)
        max_val = np.max(self.data)

        mask = (self.data > (7./8.) * (max_val - min_val))
        output[mask] = 3.

        mask = (self.data > (3./4.) * (max_val - min_val)) & (self.data <= (7./8.) * (max_val - min_val))
        output[mask] = 2.

        mask = (self.data > (1./2.) * (max_val - min_val)) & (self.data <= (3./4.) * (max_val - min_val))
        output[mask] = 1.

        return output


    def __str__(self):
        return self.name


# =============================================================
# function: distance_euclid
#   returns Euclidean distance between two points
# =============================================================
def distance_euclid(point1, point2):
    return math.sqrt((point1[0] - point2[0])**2 + (point1[1]-point2[1])**2)


# =============================================================
# class: special_functions
#   pass input through special functions
# =============================================================
class special_function:
    def __init__(self, data, name="special function"):
        self.data = np.float32(data)
        self.name = name

    def soft_coring(self, slope, tau_threshold, gamma_speed):
        # Usage: Used in the unsharp masking sharpening Process
        # Input:
        #   slope:                  controls the boost.
        #                           the amount of sharpening, higher slope
        #                           means more aggresssive sharpening
        #
        #   tau_threshold:          controls the amount of coring.
        #                           threshold value till which the image is
        #                           not sharpened. The lower the value of
        #                           tau_threshold the more frequencies
        #                           goes through the sharpening process
        #
        #   gamma_speed:            controls the speed of convergence to the slope
        #                           smaller value gives a little bit more
        #                           sharpened image, this may be a fine tuner
        return slope * self.data * ( 1. - np.exp(-((np.abs(self.data / tau_threshold))**gamma_speed)))


    def distortion_function(self, correction_type="barrel-1", strength=0.1):

        if (correction_type == "pincushion-1"):
            return np.divide(self.data, 1. + strength * self.data)
        elif (correction_type == "pincushion-2"):
            return np.divide(self.data, 1. + strength * np.power(self.data, 2))
        elif (correction_type == "barrel-1"):
            return np.multiply(self.data, 1. + strength * self.data)
        elif (correction_type == "barrel-2"):
            return np.multiply(self.data, 1. + strength * np.power(self.data, 2))
        else:
            print("Warning! Unknown correction_type.")
            return

    def bilateral_filter(self, edge):
        # bilateral filter based upon the work of
        # Jiawen Chen, Sylvain Paris, and Fredo Durand, 2007 work

        # note: if edge data is not provided, image is served as edge
        # this is called normal bilateral filter
        # if edge data is provided, then it is called cross or joint
        # bilateral filter

        # get width and height of the image
        width, height = helpers(self.data).get_width_height()

        # sigma_spatial
        sigma_spatial = min(height, width) / 16.

        # calculate edge_delta
        edge_min = np.min(edge)
        edge_max = np.max(edge)
        edge_delta = edge_max - edge_min

        # sigma_range and sampling_range
        sigma_range = 0.1 * edge_delta
        sampling_range = sigma_range
        sampling_spatial = sigma_spatial

        # derived_sigma_spatial and derived_sigma_range
        derived_sigma_spatial = sigma_spatial / sampling_spatial
        derived_sigma_range = sigma_range / sampling_range

        # paddings
        padding_xy = np.floor(2. * derived_sigma_spatial) + 1.
        padding_z = np.floor(2. * derived_sigma_range) + 1.

        # downsamples
        downsample_width = np.uint16(np.floor((width - 1.) / sampling_spatial) + 1. + 2. * padding_xy)
        downsample_height = np.uint16(np.floor((height - 1.) / sampling_spatial) + 1. + 2. * padding_xy)
        downsample_depth = np.uint16(np.floor(edge_delta / sampling_range) + 1. + 2. * padding_z)

        grid_data = np.zeros((downsample_height, downsample_width, downsample_depth))
        grid_weight = np.zeros((downsample_height, downsample_width, downsample_depth))

        jj, ii = np.meshgrid(np.arange(0, width, 1),\
                             np.arange(0, height, 1))

        di = np.uint16(np.round( ii / sampling_spatial ) + padding_xy + 1.)
        dj = np.uint16(np.round( jj / sampling_spatial ) + padding_xy + 1.)
        dz = np.uint16(np.round( (edge - edge_min) / sampling_range ) + padding_z + 1.)


        for i in range(0, height):
            for j in range(0, width):

                data_z = self.data[i, j]
                if not np.isnan(data_z):
                    dik = di[i, j]
                    djk = dj[i, j]
                    dzk = dz[i, j]

                    grid_data[dik, djk, dzk] = grid_data[dik, djk, dzk] + data_z
                    grid_weight[dik, djk, dzk] = grid_weight[dik, djk, dzk] + 1.


        kernel_width = 2. * derived_sigma_spatial + 1.
        kernel_height = kernel_width
        kernel_depth = 2. * derived_sigma_range + 1.

        half_kernel_width = np.floor(kernel_width / 2.)
        half_kernel_height = np.floor(kernel_height / 2.)
        half_kernel_depth = np.floor(kernel_depth / 2.)

        grid_x, grid_y, grid_z = np.meshgrid(np.arange(0, kernel_width, 1),\
                                             np.arange(0, kernel_height, 1),\
                                             np.arange(0, kernel_depth, 1))

        grid_x = grid_x - half_kernel_width
        grid_y = grid_y - half_kernel_height
        grid_z = grid_z - half_kernel_depth

        grid_r_squared = ( ( np.multiply(grid_x, grid_x) + \
                             np.multiply(grid_y, grid_y) ) / np.multiply(derived_sigma_spatial, derived_sigma_spatial) ) + \
                         ( np.multiply(grid_z, grid_z) / np.multiply(derived_sigma_range, derived_sigma_range) )

        kernel = np.exp(-0.5 * grid_r_squared)
        blurred_grid_data = ndimage.convolve(grid_data, kernel, mode='reflect')
        blurred_grid_weight = ndimage.convolve(grid_weight, kernel, mode='reflect')

        # divide
        blurred_grid_weight = np.asarray(blurred_grid_weight)
        mask = blurred_grid_weight == 0
        blurred_grid_weight[mask] = -2.
        normalized_blurred_grid = np.divide(blurred_grid_data, blurred_grid_weight)
        mask = blurred_grid_weight < -1
        normalized_blurred_grid[mask] = 0.
        blurred_grid_weight[mask] = 0.

        # upsample
        jj, ii = np.meshgrid(np.arange(0, width, 1),\
                             np.arange(0, height, 1))

        di = (ii / sampling_spatial) + padding_xy + 1.
        dj = (jj / sampling_spatial) + padding_xy + 1.
        dz = (edge - edge_min) / sampling_range + padding_z + 1.

        # arrange the input points
        n_i, n_j, n_z = np.shape(normalized_blurred_grid)
        points = (np.arange(0, n_i, 1), np.arange(0, n_j, 1), np.arange(0, n_z, 1))

        # query points
        xi = (di, dj, dz)

        # multidimensional interpolation
        output = interpolate.interpn(points, normalized_blurred_grid, xi, method='linear')

        return output



# =============================================================
# class: synthetic_image_generate
#   creates sysnthetic images for different purposes
# =============================================================
class synthetic_image_generate:
    def __init__(self, width, height, name="synthetic_image"):
        self.name = name
        self.width = width
        self.height = height

    def create_lens_shading_correction_images(self, dark_current=0, flat_max=65535, flat_min=0, clip_range=[0, 65535]):
        # Objective: creates two images:
        #               dark_current_image and flat_field_image
        dark_current_image = dark_current * np.ones((self.height, self.width), dtype=np.float32)
        flat_field_image = np.empty((self.height, self.width), dtype=np.float32)

        center_pixel_pos = [self.height/2, self.width/2]
        max_distance = distance_euclid(center_pixel_pos, [self.height, self.width])

        for i in range(0, self.height):
            for j in range(0, self.width):
                flat_field_image[i, j] = (max_distance - distance_euclid(center_pixel_pos, [i, j])) / max_distance
                flat_field_image[i, j] = flat_min + flat_field_image[i, j] * (flat_max - flat_min)

        dark_current_image = np.clip(dark_current_image, clip_range[0], clip_range[1])
        flat_field_image = np.clip(flat_field_image, clip_range[0], clip_range[1])

        return dark_current_image, flat_field_image

    def create_zone_plate_image(self):
        pass

    def create_color_gradient_image(self):
        pass

    def create_random_noise_image(self, mean=0, standard_deviation=1, seed=0):
        # Creates normally distributed noisy image
        np.random.seed(seed)
        return np.random.normal(mean, standard_deviation, (self.height, self.width))

    def create_noisy_image(self, data, mean=0, standard_deviation=1, seed=0, clip_range=[0, 65535]):
        # Adds normally distributed noise to the data
        return np.clip(data + self.create_random_noise_image(mean, standard_deviation, seed), clip_range[0], clip_range[1])


# =============================================================
# class: create_filter
#   creates different filters, generally 2D filters
# =============================================================
class create_filter:
    def __init__(self, name="filter"):
        self.name = name

    def gaussian(self, kernel_size, sigma):

        # calculate which number to where the grid should be
        # remember that, kernel_size[0] is the width of the kernel
        # and kernel_size[1] is the height of the kernel
        temp = np.floor(np.float32(kernel_size) / 2.)

        # create the grid
        # example: if kernel_size = [5, 3], then:
        # x: array([[-2., -1.,  0.,  1.,  2.],
        #           [-2., -1.,  0.,  1.,  2.],
        #           [-2., -1.,  0.,  1.,  2.]])
        # y: array([[-1., -1., -1., -1., -1.],
        #           [ 0.,  0.,  0.,  0.,  0.],
        #           [ 1.,  1.,  1.,  1.,  1.]])
        x, y = np.meshgrid(np.linspace(-temp[0], temp[0], kernel_size[0]),\
                           np.linspace(-temp[1], temp[1], kernel_size[1]))

        # Gaussian equation
        temp = np.exp( -(x**2 + y**2) / (2. * sigma**2) )

        # make kernel sum equal to 1
        return temp / np.sum(temp)

    def gaussian_separable(self, kernel_size, sigma):

        # calculate which number to where the grid should be
        # remember that, kernel_size[0] is the width of the kernel
        # and kernel_size[1] is the height of the kernel
        temp = np.floor(np.float32(kernel_size) / 2.)

        # create the horizontal kernel
        x = np.linspace(-temp[0], temp[0], kernel_size[0])
        x = x.reshape((1, kernel_size[0])) # reshape to create row vector
        hx = np.exp(-x**2 / (2 * sigma**2))
        hx = hx / np.sum(hx)

        # create the vertical kernel
        y = np.linspace(-temp[1], temp[1], kernel_size[1])
        y = y.reshape((kernel_size[1], 1)) # reshape to create column vector
        hy = np.exp(-y**2 / (2 * sigma**2))
        hy = hy / np.sum(hy)

        return hx, hy

    def sobel(self, kernel_size):
        # Returns the Sobel filter kernels Sx and Sy

        Sx = .25 * np.dot([[1.], [2.], [1.]], [[1., 0., -1.]])

        if (kernel_size > 3):

            n = (np.floor((kernel_size - 5) / 2 + 1)).astype(int)

            for i in range(0, n):

                Sx = (1./16.) * signal.convolve2d(np.dot([[1.], [2.], [1.]], [[1., 2., 1.]]), Sx)

        Sy = np.transpose(Sx)

        return Sx, Sy

    def __str__(self):
        return self.name


# =============================================================
# class: color_conversion
#   color conversion from one color space to another
# =============================================================
class color_conversion:
    def __init__(self, data, name="color conversion"):
        self.data = np.float32(data)
        self.name = name

    def rgb2gray(self):
        return 0.299 * self.data[:, :, 0] +\
               0.587 * self.data[:, :, 1] +\
               0.114 * self.data[:, :, 2]

    def rgb2ycc(self, rule="bt601"):

        # map to select kr and kb
        kr_kb_dict = {"bt601" : [0.299, 0.114],\
                      "bt709" : [0.2126, 0.0722],\
                      "bt2020" : [0.2627, 0.0593]}

        kr = kr_kb_dict[rule][0]
        kb = kr_kb_dict[rule][1]
        kg = 1 - (kr + kb)

        output = np.empty(np.shape(self.data), dtype=np.float32)
        output[:, :, 0] = kr * self.data[:, :, 0] + \
                          kg * self.data[:, :, 1] + \
                          kb * self.data[:, :, 2]
        output[:, :, 1] = 0.5 * ((self.data[:, :, 2] - output[:, :, 0]) / (1 - kb))
        output[:, :, 2] = 0.5 * ((self.data[:, :, 0] - output[:, :, 0]) / (1 - kr))

        return output

    def ycc2rgb(self, rule="bt601"):

        # map to select kr and kb
        kr_kb_dict = {"bt601" : [0.299, 0.114],\
                      "bt709" : [0.2126, 0.0722],\
                      "bt2020" : [0.2627, 0.0593]}

        kr = kr_kb_dict[rule][0]
        kb = kr_kb_dict[rule][1]
        kg = 1 - (kr + kb)

        output = np.empty(np.shape(self.data), dtype=np.float32)
        output[:, :, 0] = 2. * self.data[:, :, 2] * (1 - kr) + self.data[:, :, 0]
        output[:, :, 2] = 2. * self.data[:, :, 1] * (1 - kb) + self.data[:, :, 0]
        output[:, :, 1] = (self.data[:, :, 0] - kr * output[:, :, 0] - kb * output[:, :, 2]) / kg

        return output

    def rgb2xyz(self, color_space="srgb", clip_range=[0, 65535]):
        # input rgb in range clip_range
        # output xyz is in range 0 to 1

        if (color_space == "srgb"):

            # degamma / linearization
            data = helpers(self.data).degamma_srgb(clip_range)
            data = np.float32(data)
            data = np.divide(data, clip_range[1])

            # matrix multiplication`
            output = np.empty(np.shape(self.data), dtype=np.float32)
            output[:, :, 0] = data[:, :, 0] * 0.4124 + data[:, :, 1] * 0.3576 + data[:, :, 2] * 0.1805
            output[:, :, 1] = data[:, :, 0] * 0.2126 + data[:, :, 1] * 0.7152 + data[:, :, 2] * 0.0722
            output[:, :, 2] = data[:, :, 0] * 0.0193 + data[:, :, 1] * 0.1192 + data[:, :, 2] * 0.9505

        elif (color_space == "adobe-rgb-1998"):

            # degamma / linearization
            data = helpers(self.data).degamma_adobe_rgb_1998(clip_range)
            data = np.float32(data)
            data = np.divide(data, clip_range[1])

            # matrix multiplication
            output = np.empty(np.shape(self.data), dtype=np.float32)
            output[:, :, 0] = data[:, :, 0] * 0.5767309 + data[:, :, 1] * 0.1855540 + data[:, :, 2] * 0.1881852
            output[:, :, 1] = data[:, :, 0] * 0.2973769 + data[:, :, 1] * 0.6273491 + data[:, :, 2] * 0.0752741
            output[:, :, 2] = data[:, :, 0] * 0.0270343 + data[:, :, 1] * 0.0706872 + data[:, :, 2] * 0.9911085

        elif (color_space == "linear"):

            # matrix multiplication`
            output = np.empty(np.shape(self.data), dtype=np.float32)
            data = np.float32(self.data)
            data = np.divide(data, clip_range[1])
            output[:, :, 0] = data[:, :, 0] * 0.4124 + data[:, :, 1] * 0.3576 + data[:, :, 2] * 0.1805
            output[:, :, 1] = data[:, :, 0] * 0.2126 + data[:, :, 1] * 0.7152 + data[:, :, 2] * 0.0722
            output[:, :, 2] = data[:, :, 0] * 0.0193 + data[:, :, 1] * 0.1192 + data[:, :, 2] * 0.9505

        else:
            print("Warning! color_space must be srgb or adobe-rgb-1998.")
            return

        return output


    def xyz2rgb(self, color_space="srgb", clip_range=[0, 65535]):
        # input xyz is in range 0 to 1
        # output rgb in clip_range

        # allocate space for output
        output = np.empty(np.shape(self.data), dtype=np.float32)

        if (color_space == "srgb"):

            # matrix multiplication
            output[:, :, 0] = self.data[:, :, 0] *  3.2406 + self.data[:, :, 1] * -1.5372 + self.data[:, :, 2] * -0.4986
            output[:, :, 1] = self.data[:, :, 0] * -0.9689 + self.data[:, :, 1] *  1.8758 + self.data[:, :, 2] *  0.0415
            output[:, :, 2] = self.data[:, :, 0] *  0.0557 + self.data[:, :, 1] * -0.2040 + self.data[:, :, 2] *  1.0570

            # gamma to retain nonlinearity
            output = helpers(output * clip_range[1]).gamma_srgb(clip_range)


        elif (color_space == "adobe-rgb-1998"):

            # matrix multiplication
            output[:, :, 0] = self.data[:, :, 0] *  2.0413690 + self.data[:, :, 1] * -0.5649464 + self.data[:, :, 2] * -0.3446944
            output[:, :, 1] = self.data[:, :, 0] * -0.9692660 + self.data[:, :, 1] *  1.8760108 + self.data[:, :, 2] *  0.0415560
            output[:, :, 2] = self.data[:, :, 0] *  0.0134474 + self.data[:, :, 1] * -0.1183897 + self.data[:, :, 2] *  1.0154096

            # gamma to retain nonlinearity
            output = helpers(output * clip_range[1]).gamma_adobe_rgb_1998(clip_range)


        elif (color_space == "linear"):

            # matrix multiplication
            output[:, :, 0] = self.data[:, :, 0] *  3.2406 + self.data[:, :, 1] * -1.5372 + self.data[:, :, 2] * -0.4986
            output[:, :, 1] = self.data[:, :, 0] * -0.9689 + self.data[:, :, 1] *  1.8758 + self.data[:, :, 2] *  0.0415
            output[:, :, 2] = self.data[:, :, 0] *  0.0557 + self.data[:, :, 1] * -0.2040 + self.data[:, :, 2] *  1.0570

            # gamma to retain nonlinearity
            output = output * clip_range[1]

        else:
            print("Warning! color_space must be srgb or adobe-rgb-1998.")
            return

        return output


    def xyz2lab(self, cie_version="1931", illuminant="d65"):

        xyz_reference = helpers().get_xyz_reference(cie_version, illuminant)

        data = self.data
        data[:, :, 0] = data[:, :, 0] / xyz_reference[0]
        data[:, :, 1] = data[:, :, 1] / xyz_reference[1]
        data[:, :, 2] = data[:, :, 2] / xyz_reference[2]

        data = np.asarray(data)

        # if data[x, y, c] > 0.008856, data[x, y, c] = data[x, y, c] ^ (1/3)
        # else, data[x, y, c] = 7.787 * data[x, y, c] + 16/116
        mask = data > 0.008856
        data[mask] **= 1./3.
        data[np.invert(mask)] *= 7.787
        data[np.invert(mask)] += 16./116.

        data = np.float32(data)
        output = np.empty(np.shape(self.data), dtype=np.float32)
        output[:, :, 0] = 116. * data[:, :, 1] - 16.
        output[:, :, 1] = 500. * (data[:, :, 0] - data[:, :, 1])
        output[:, :, 2] = 200. * (data[:, :, 1] - data[:, :, 2])

        return output


    def lab2xyz(self, cie_version="1931", illuminant="d65"):

        output = np.empty(np.shape(self.data), dtype=np.float32)

        output[:, :, 1] = (self.data[:, :, 0] + 16.) / 116.
        output[:, :, 0] = (self.data[:, :, 1] / 500.) + output[:, :, 1]
        output[:, :, 2] = output[:, :, 1] - (self.data[:, :, 2] / 200.)

        # if output[x, y, c] > 0.008856, output[x, y, c] ^ 3
        # else, output[x, y, c] = ( output[x, y, c] - 16/116 ) / 7.787
        output = np.asarray(output)
        mask = output > 0.008856
        output[mask] **= 3.
        output[np.invert(mask)] -= 16/116
        output[np.invert(mask)] /= 7.787

        xyz_reference = helpers().get_xyz_reference(cie_version, illuminant)

        output = np.float32(output)
        output[:, :, 0] = output[:, :, 0] * xyz_reference[0]
        output[:, :, 1] = output[:, :, 1] * xyz_reference[1]
        output[:, :, 2] = output[:, :, 2] * xyz_reference[2]

        return output

    def lab2lch(self):

        output = np.empty(np.shape(self.data), dtype=np.float32)

        output[:, :, 0] = self.data[:, :, 0] # L transfers directly
        output[:, :, 1] = np.power(np.power(self.data[:, :, 1], 2) + np.power(self.data[:, :, 2], 2), 0.5)
        output[:, :, 2] = np.arctan2(self.data[:, :, 2], self.data[:, :, 1]) * 180 / np.pi

        return output

    def lch2lab(self):

        output = np.empty(np.shape(self.data), dtype=np.float32)

        output[:, :, 0] = self.data[:, :, 0] # L transfers directly
        output[:, :, 1] = np.multiply(np.cos(self.data[:, :, 2] * np.pi / 180), self.data[:, :, 1])
        output[:, :, 2] = np.multiply(np.sin(self.data[:, :, 2] * np.pi / 180), self.data[:, :, 1])

        return output

    def __str__(self):
        return self.name


# =============================================================
# class: edge_detection
#   detect edges in an image
# =============================================================
class edge_detection:
    def __init__(self, data, name="edge detection"):
        self.data = np.float32(data)
        self.name = name

    def sobel(self, kernel_size=3, output_type="all", threshold=0., clip_range=[0, 65535]):

        Sx, Sy = create_filter().sobel(kernel_size)

        # Gradient in x direction: Gx
        # Gradient in y direction: Gy
        if np.ndim(self.data) > 2:

            Gx = np.empty(np.shape(self.data), dtype=np.float32)
            Gy = np.empty(np.shape(self.data), dtype=np.float32)

            for dimension_idx in range(0, np.shape(self.data)[2]):
                Gx[:, :, dimension_idx] = signal.convolve2d(self.data[:, :, dimension_idx], Sx, mode="same", boundary="symm")
                Gy[:, :, dimension_idx] = signal.convolve2d(self.data[:, :, dimension_idx], Sy, mode="same", boundary="symm")

        elif np.ndim(self.data) == 2:
            Gx = signal.convolve2d(self.data, Sx, mode="same", boundary="symm")
            Gy = signal.convolve2d(self.data, Sy, mode="same", boundary="symm")

        else:
            print("Warning! Data dimension must be 2 or 3.")

        # Gradient magnitude
        G = np.power(np.power(Gx, 2) + np.power(Gy, 2), .5)

        if (output_type == "gradient_magnitude"):
            return G

        # Gradient angle
        theta = np.arctan(np.divide(Gy, Gx)) * 180. / np.pi

        if (output_type == "gradient_magnitude_and_angle"):
            return G, theta

        # Change the threshold according to the clip_range's maximum value
        threshold = threshold * clip_range[1]

        # calculating if the edge is a strong edge
        is_edge = np.zeros(np.shape(self.data)).astype(int)
        mask = G > threshold
        is_edge[mask] = 1

        if (output_type == "is_edge"):
            return is_edge


        # Edge direction label
        temp = np.asarray(theta)
        direction_label = np.zeros(np.shape(self.data), dtype=np.float32)

        if np.ndim(self.data > 2):
            for i in range(0, np.shape(self.data)[2]):
                direction_label[:, :, i] = helpers().sobel_prewitt_direction_label(G[:, :, i], theta[:, :, i], threshold)
        else:
            direction_label = helpers().sobel_prewitt_direction_label(G, theta, threshold)

        if (output_type == "all"):
            return G, Gx, Gy, theta, is_edge, direction_label


    def __str__(self):
        return self.name