NPRC24 / SCBC /Utiles.py
Artyom
scbc
f8d6c27 verified
raw
history blame
4.07 kB
import numpy as np
from fractions import Fraction
import cv2
import numpy as np
import exifread
from exifread.utils import Ratio
import struct
import json
import torch
import time
Temp = np.ones([1536,2048]).astype(np.float32)
Timg = np.ones([768,1024,3]).astype(np.float32)
def apply_gamma(x):
# return x ** (1.0 / 2.2)
x = x.copy()
idx = x <= 0.0031308
x[idx] *= 12.92
x[idx == False] = (x[idx == False] ** (1.0 / 2.4)) * 1.055 - 0.055
return x
def binning(img,data):
if data['cfa_pattern'] == [0,1,1,2]:
ch_R = img[0::2, 0::2]
ch_G = (img[1::2, 0::2]+img[0::2,1::2])/2
ch_B = img[1::2, 1::2]
out = np.dstack((ch_R, ch_G, ch_B))
if data['cfa_pattern'] == [2,1,1,0]:
ch_R = img[1::2, 1::2]
ch_G = (img[1::2, 0::2]+img[0::2,1::2])/2
ch_B = img[0::2, 0::2]
out = np.dstack((ch_R, ch_G, ch_B))
return out
def Four2One(img):
Temp[0::2,0::2] = img[:,:,0]
Temp[1::2,0::2] = img[:,:,1]
Temp[0::2,1::2] = img[:,:,1]
Temp[1::2,1::2] = img[:,:,2]
return Temp
def One2Four(Temp):
Timg[:,:,0] = Temp[0::2,0::2]
Timg[:,:,1] = (Temp[1::2,0::2]+Temp[0::2,1::2])/2
Timg[:,:,2] = Temp[1::2,1::2]
return Timg
def white_balance(demosaic_img, as_shot_neutral):
if type(as_shot_neutral[0]) is Ratio:
as_shot_neutral = ratios2floats(as_shot_neutral)
as_shot_neutral = np.asarray(as_shot_neutral)
# transform vector into matrix
if as_shot_neutral.shape == (3,):
as_shot_neutral = np.diag(1. / as_shot_neutral)
assert as_shot_neutral.shape == (3, 3)
white_balanced_image = np.dot(demosaic_img, as_shot_neutral.T)
white_balanced_image = np.clip(white_balanced_image, 0.0, 1.0)
return white_balanced_image
def apply_color_space_transform(demosaiced_image, color_matrix):
xyz2cam = np.reshape(np.asarray(color_matrix), (3, 3))
# normalize rows (needed?)
xyz2cam = xyz2cam / np.sum(xyz2cam, axis=1, keepdims=True)
# inverse
cam2xyz = np.linalg.inv(xyz2cam)
# simplified matrix multiplication
xyz_image = cam2xyz[np.newaxis, np.newaxis, :, :] * \
demosaiced_image[:, :, np.newaxis, :]
xyz_image = np.sum(xyz_image, axis=-1)
xyz_image = np.clip(xyz_image, 0.0, 1.0)
return xyz_image
def transform_xyz_to_srgb(xyz_image):
xyz2srgb = np.array([[3.2404542, -1.5371385, -0.4985314],
[-0.9692660, 1.8760108, 0.0415560],
[0.0556434, -0.2040259, 1.0572252]])
# normalize rows (needed?)
xyz2srgb = xyz2srgb / np.sum(xyz2srgb, axis=-1, keepdims=True)
srgb_image = xyz2srgb[np.newaxis, np.newaxis, :, :] * xyz_image[:, :, np.newaxis, :]
srgb_image = np.sum(srgb_image, axis=-1)
srgb_image = np.clip(srgb_image, 0.0, 1.0)
return srgb_image
def fix_orientation(image, orientation):
# 1 = Horizontal(normal)
# 2 = Mirror horizontal
# 3 = Rotate 180
# 4 = Mirror vertical
# 5 = Mirror horizontal and rotate 270 CW
# 6 = Rotate 90 CW
# 7 = Mirror horizontal and rotate 90 CW
# 8 = Rotate 270 CW
if type(orientation) is list:
orientation = orientation[0]
if orientation == "Horizontal(normal)":
pass
elif orientation == "Mirror horizonta":
image = cv2.flip(image, 0)
elif orientation == "Rotate 180":
image = cv2.rotate(image, cv2.ROTATE_180)
elif orientation == "Mirror vertical":
image = cv2.flip(image, 1)
elif orientation == "Mirror horizontal and rotate 270 CW":
image = cv2.flip(image, 0)
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif orientation == "Rotate 90 CW":
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif orientation == "Mirror horizontal and rotate 90 CW":
image = cv2.flip(image, 0)
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
elif orientation == "Rotate 270 CW":
image = cv2.rotate(image, cv2.ROTATE_90_COUNTERCLOCKWISE)
return image