import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import sys class Conv2d(nn.Module): def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, D=1, activation=nn.ReLU()): super(Conv2d, self).__init__() if activation: self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=padding, dilation=D), activation ) else: self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=padding, dilation=D) ) def forward(self, x): x = self.conv(x) return x def init_He(module): for m in module.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def pad_divide_by(in_list, d, in_size): out_list = [] h, w = in_size if h % d > 0: new_h = h + d - h % d else: new_h = h if w % d > 0: new_w = w + d - w % d else: new_w = w lh, uh = int((new_h-h) / 2), int(new_h-h) - int((new_h-h) / 2) lw, uw = int((new_w-w) / 2), int(new_w-w) - int((new_w-w) / 2) pad_array = (int(lw), int(uw), int(lh), int(uh)) for inp in in_list: out_list.append(F.pad(inp, pad_array)) return out_list, pad_array