File size: 19,135 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
python process_vad_data.py \
--out_dir=<output path to where the generated manifest should be stored> \
--speech_data_root=<path where the speech data are stored> \
--background_data_root=<path where the background data are stored> \
--rebalance_method=<'under' or 'over' or 'fixed'> \
--log
(Optional --demo (for demonstration in tutorial). If you want to use your own background noise data, make sure to delete --demo)
"""
import argparse
import glob
import json
import logging
import os
import tarfile
import urllib.request
import librosa
import numpy as np
import soundfile as sf
from sklearn.model_selection import train_test_split
sr = 16000
# google speech command v2
URL = "http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz"
def __maybe_download_file(destination: str, source: str):
"""
Downloads source to destination if it doesn't exist.
If exists, skips download
Args:
destination: local filepath
source: url of resource
Returns:
"""
if not os.path.exists(destination):
logging.info(f"{destination} does not exist. Downloading ...")
urllib.request.urlretrieve(source, filename=destination + '.tmp')
os.rename(destination + '.tmp', destination)
logging.info(f"Downloaded {destination}.")
else:
logging.info(f"Destination {destination} exists. Skipping.")
return destination
def extract_file(filepath: str, data_dir: str):
try:
tar = tarfile.open(filepath)
tar.extractall(data_dir)
tar.close()
except Exception:
logging.info('Not extracting. Maybe already there?')
def __extract_all_files(filepath: str, data_root: str, data_dir: str):
if not os.path.exists(data_dir):
extract_file(filepath, data_dir)
else:
logging.info(f'Skipping extracting. Data already there {data_dir}')
def split_train_val_test(data_dir, file_type, test_size=0.1, val_size=0.1, demo=False):
X = []
if file_type == "speech":
for o in os.listdir(data_dir):
if os.path.isdir(os.path.join(data_dir, o)) and o.split("/")[-1] != "_background_noise_":
X.extend(glob.glob(os.path.join(data_dir, o) + '/*.wav'))
if demo:
logging.info(
f"For Demonstration, we use {int(len(X)/100)}/{len(X)} speech data. Make sure to remove --demo flag when you actually train your model!"
)
X = np.random.choice(X, int(len(X) / 100), replace=False)
else:
for o in os.listdir(data_dir):
if os.path.isdir(os.path.join(data_dir, o)):
X.extend(glob.glob(os.path.join(data_dir, o) + '/*.wav'))
else: # for using "_background_noise_" from google speech commands as background data
if o.endswith(".wav"):
X.append(os.path.join(data_dir, o))
X_train, X_test = train_test_split(X, test_size=test_size, random_state=1)
val_size_tmp = val_size / (1 - test_size)
X_train, X_val = train_test_split(X_train, test_size=val_size_tmp, random_state=1)
with open(os.path.join(data_dir, file_type + "_training_list.txt"), "w") as outfile:
outfile.write("\n".join(X_train))
with open(os.path.join(data_dir, file_type + "_testing_list.txt"), "w") as outfile:
outfile.write("\n".join(X_test))
with open(os.path.join(data_dir, file_type + "_validation_list.txt"), "w") as outfile:
outfile.write("\n".join(X_val))
logging.info(f'Overall: {len(X)}, Train: {len(X_train)}, Validatoin: {len(X_val)}, Test: {len(X_test)}')
logging.info(f"Finish spliting train, val and test for {file_type}. Write to files!")
def process_google_speech_train(data_dir):
X = []
for o in os.listdir(data_dir):
if os.path.isdir(os.path.join(data_dir, o)) and o.split("/")[-1] != "_background_noise_":
X.extend(glob.glob(os.path.join(data_dir, o) + '/*.wav'))
short_files = [i.split(data_dir)[1] for i in files]
with open(os.path.join(data_dir, 'testing_list.txt'), 'r') as allfile:
testing_list = allfile.read().splitlines()
with open(os.path.join(data_dir, 'validation_list.txt'), 'r') as allfile:
validation_list = allfile.read().splitlines()
exist_set = set(testing_list).copy()
exist_set.update(set(validation_list))
training_list = [i for i in short_files if i not in exist_set]
with open(os.path.join(data_dir, "training_list.txt"), "w") as outfile:
outfile.write("\n".join(training_list))
logging.info(
f'Overall: {len(files)}, Train: {len(training_list)}, Validatoin: {len(validation_list)}, Test: {len(testing_list)}'
)
def write_manifest(
out_dir,
files,
prefix,
manifest_name,
start=0.0,
end=None,
duration_stride=1.0,
duration_max=None,
duration_limit=100.0,
filter_long=False,
):
"""
Given a list of files, segment each file and write them to manifest with restrictions.
Args:
out_dir: directory of generated manifest
files: list of files to be processed
prefix: label of samples
manifest_name: name of generated manifest
start: beginning of audio of generating segment
end: end of audio of generating segment
duration_stride: stride for segmenting audio samples
duration_max: duration for each segment
duration_limit: duration threshold for filtering out long audio samples
filter_long: boolean to determine whether to filter out long audio samples
Returns:
"""
seg_num = 0
skip_num = 0
if duration_max is None:
duration_max = 1e9
if not os.path.exists(out_dir):
logging.info(f'Outdir {out_dir} does not exist. Creat directory.')
os.mkdir(out_dir)
output_path = os.path.join(out_dir, manifest_name + '.json')
with open(output_path, 'w') as fout:
for file in files:
label = prefix
try:
x, _sr = librosa.load(file, sr=sr)
duration = librosa.get_duration(y=x, sr=sr)
except Exception:
continue
if filter_long and duration > duration_limit:
skip_num += 1
continue
offsets = []
durations = []
if duration > duration_max:
current_offset = start
while current_offset < duration:
if end is not None and current_offset > end:
break
difference = duration - current_offset
if difference < duration_max:
break
offsets.append(current_offset)
durations.append(duration_max)
current_offset += duration_stride
else:
# Duration is not long enough! Skip
skip_num += 1
for duration, offset in zip(durations, offsets):
metadata = {
'audio_filepath': file,
'duration': duration,
'label': label,
'text': '_', # for compatibility with ASRAudioText
'offset': offset,
}
json.dump(metadata, fout)
fout.write('\n')
fout.flush()
seg_num += 1
return skip_num, seg_num, output_path
def load_list_write_manifest(
data_dir,
out_dir,
filename,
prefix,
start,
end,
duration_stride=1.0,
duration_max=1.0,
duration_limit=100.0,
filter_long=True,
):
filename = prefix + '_' + filename
file_path = os.path.join(data_dir, filename)
with open(file_path, 'r') as allfile:
files = allfile.read().splitlines()
manifest_name = filename.split('_list.txt')[0] + '_manifest'
skip_num, seg_num, output_path = write_manifest(
out_dir,
files,
prefix,
manifest_name,
start,
end,
duration_stride,
duration_max,
duration_limit,
filter_long=True,
)
return skip_num, seg_num, output_path
def rebalance_json(data_dir, data_json, num, prefix):
data = []
seg = 0
with open(data_json, 'r') as f:
for line in f:
data.append(json.loads(line))
filename = data_json.split('/')[-1]
fout_path = os.path.join(data_dir, prefix + "_" + filename)
if len(data) >= num:
selected_sample = np.random.choice(data, num, replace=False)
else:
selected_sample = np.random.choice(data, num, replace=True)
with open(fout_path, 'a') as fout:
for i in selected_sample:
seg += 1
json.dump(i, fout)
fout.write('\n')
fout.flush()
logging.info(f'Get {seg}/{num} to {fout_path} from {data_json}')
return fout_path
def generate_variety_noise(data_dir, filename, prefix):
curr_dir = data_dir.split("_background_noise_")[0]
silence_path = os.path.join(curr_dir, "_background_noise_more")
if not os.path.exists(silence_path):
os.mkdir(silence_path)
silence_stride = 1000 # stride = 1/16 seconds
sampling_rate = 16000
silence_files = []
rng = np.random.RandomState(0)
filename = prefix + '_' + filename
file_path = os.path.join(data_dir, filename)
with open(file_path, 'r') as allfile:
files = allfile.read().splitlines()
for file in files:
y, sr = librosa.load(path=file, sr=sampling_rate)
for i in range(
0, len(y) - sampling_rate, silence_stride * 100
): # stride * 100 to generate less samples for demo
file_name = "{}_{}.wav".format(file.split("/")[-1], i)
y_slice = y[i : i + sampling_rate]
magnitude = rng.uniform(0.0, 1.0)
y_slice *= magnitude
out_file_path = os.path.join(silence_path, file_name)
sf.write(out_file_path, y_slice, sr)
silence_files.append(out_file_path)
new_list_file = os.path.join(silence_path, filename)
with open(new_list_file, "w") as outfile:
outfile.write("\n".join(silence_files))
logging.info(f"Generate {len(out_file_path)} background files for {file_path}. => {new_list_file} !")
return len(silence_files)
def main():
parser = argparse.ArgumentParser(description='Speech and backgound data download and preprocess')
parser.add_argument("--out_dir", required=False, default='./manifest/', type=str)
parser.add_argument("--speech_data_root", required=True, default=None, type=str)
parser.add_argument("--background_data_root", required=True, default=None, type=str)
parser.add_argument('--test_size', required=False, default=0.1, type=float)
parser.add_argument('--val_size', required=False, default=0.1, type=float)
parser.add_argument('--window_length_in_sec', required=False, default=0.63, type=float)
parser.add_argument('--log', required=False, action='store_true')
parser.add_argument('--rebalance_method', required=False, default=None, type=str)
parser.add_argument('--demo', required=False, action='store_true')
parser.set_defaults(log=False, generate=False)
args = parser.parse_args()
if not args.rebalance_method:
rebalance = False
else:
if args.rebalance_method != 'over' and args.rebalance_method != 'under' and args.rebalance_method != 'fixed':
raise NameError("Please select a valid sampling method: over/under/fixed.")
else:
rebalance = True
if args.log:
logging.basicConfig(level=logging.DEBUG)
# Download speech data
speech_data_root = args.speech_data_root
data_set = "google_speech_recognition_v2"
speech_data_folder = os.path.join(speech_data_root, data_set)
background_data_folder = args.background_data_root
logging.info(f"Working on: {data_set}")
# Download and extract speech data
if not os.path.exists(speech_data_folder):
file_path = os.path.join(speech_data_root, data_set + ".tar.bz2")
logging.info(f"Getting {data_set}")
__maybe_download_file(file_path, URL)
logging.info(f"Extracting {data_set}")
__extract_all_files(file_path, speech_data_root, speech_data_folder)
logging.info(f"Split speech data!")
# dataset provide testing.txt and validation.txt feel free to split data using that with process_google_speech_train
split_train_val_test(speech_data_folder, "speech", args.test_size, args.val_size, args.demo)
logging.info(f"Split background data!")
split_train_val_test(background_data_folder, "background", args.test_size, args.val_size)
out_dir = args.out_dir
# Process Speech manifest
logging.info(f"=== Write speech data to manifest!")
skip_num_val, speech_seg_num_val, speech_val = load_list_write_manifest(
speech_data_folder,
out_dir,
'validation_list.txt',
'speech',
0.2,
0.8,
args.window_length_in_sec,
args.window_length_in_sec,
)
skip_num_test, speech_seg_num_test, speech_test = load_list_write_manifest(
speech_data_folder, out_dir, 'testing_list.txt', 'speech', 0.2, 0.8, 0.01, args.window_length_in_sec
)
skip_num_train, speech_seg_num_train, speech_train = load_list_write_manifest(
speech_data_folder,
out_dir,
'training_list.txt',
'speech',
0.2,
0.8,
args.window_length_in_sec,
args.window_length_in_sec,
)
logging.info(f'Val: Skip {skip_num_val} samples. Get {speech_seg_num_val} segments! => {speech_val} ')
logging.info(f'Test: Skip {skip_num_test} samples. Get {speech_seg_num_test} segments! => {speech_test}')
logging.info(f'Train: Skip {skip_num_train} samples. Get {speech_seg_num_train} segments!=> {speech_train}')
# Process background manifest
# if we select to generate more background noise data
if args.demo:
logging.info("Start generating more background noise data")
generate_variety_noise(background_data_folder, 'validation_list.txt', 'background')
generate_variety_noise(background_data_folder, 'training_list.txt', 'background')
generate_variety_noise(background_data_folder, 'testing_list.txt', 'background')
background_data_folder = os.path.join(
background_data_folder.split("_background_noise_")[0], "_background_noise_more"
)
logging.info(f"=== Write background data to manifest!")
skip_num_val, background_seg_num_val, background_val = load_list_write_manifest(
background_data_folder, out_dir, 'validation_list.txt', 'background', 0, None, 0.15, args.window_length_in_sec
)
skip_num_test, background_seg_num_test, background_test = load_list_write_manifest(
background_data_folder, out_dir, 'testing_list.txt', 'background', 0, None, 0.01, args.window_length_in_sec
)
skip_num_train, background_seg_num_train, background_train = load_list_write_manifest(
background_data_folder, out_dir, 'training_list.txt', 'background', 0, None, 0.15, args.window_length_in_sec
)
logging.info(f'Val: Skip {skip_num_val} samples. Get {background_seg_num_val} segments! => {background_val}')
logging.info(f'Test: Skip {skip_num_test} samples. Get {background_seg_num_test} segments! => {background_test}')
logging.info(
f'Train: Skip {skip_num_train} samples. Get {background_seg_num_train} segments! => {background_train}'
)
min_val, max_val = min(speech_seg_num_val, background_seg_num_val), max(speech_seg_num_val, background_seg_num_val)
min_test, max_test = (
min(speech_seg_num_test, background_seg_num_test),
max(speech_seg_num_test, background_seg_num_test),
)
min_train, max_train = (
min(speech_seg_num_train, background_seg_num_train),
max(speech_seg_num_train, background_seg_num_train),
)
logging.info('Finish generating manifest!')
if rebalance:
# Random Oversampling: Randomly duplicate examples in the minority class.
# Random Undersampling: Randomly delete examples in the majority class.
if args.rebalance_method == 'under':
logging.info(f"Rebalancing number of samples in classes using {args.rebalance_method} sampling.")
logging.info(f'Val: {min_val} Test: {min_test} Train: {min_train}!')
rebalance_json(out_dir, background_val, min_val, 'balanced')
rebalance_json(out_dir, background_test, min_test, 'balanced')
rebalance_json(out_dir, background_train, min_train, 'balanced')
rebalance_json(out_dir, speech_val, min_val, 'balanced')
rebalance_json(out_dir, speech_test, min_test, 'balanced')
rebalance_json(out_dir, speech_train, min_train, 'balanced')
if args.rebalance_method == 'over':
logging.info(f"Rebalancing number of samples in classes using {args.rebalance_method} sampling.")
logging.info(f'Val: {max_val} Test: {max_test} Train: {max_train}!')
rebalance_json(out_dir, background_val, max_val, 'balanced')
rebalance_json(out_dir, background_test, max_test, 'balanced')
rebalance_json(out_dir, background_train, max_train, 'balanced')
rebalance_json(out_dir, speech_val, max_val, 'balanced')
rebalance_json(out_dir, speech_test, max_test, 'balanced')
rebalance_json(out_dir, speech_train, max_train, 'balanced')
if args.rebalance_method == 'fixed':
fixed_test, fixed_val, fixed_train = 200, 100, 500
logging.info(f"Rebalancing number of samples in classes using {args.rebalance_method} sampling.")
logging.info(f'Val: {fixed_val} Test: {fixed_test} Train: {fixed_train}!')
rebalance_json(out_dir, background_val, fixed_val, 'balanced')
rebalance_json(out_dir, background_test, fixed_test, 'balanced')
rebalance_json(out_dir, background_train, fixed_train, 'balanced')
rebalance_json(out_dir, speech_val, fixed_val, 'balanced')
rebalance_json(out_dir, speech_test, fixed_test, 'balanced')
rebalance_json(out_dir, speech_train, fixed_train, 'balanced')
else:
logging.info("Don't rebalance number of samples in classes.")
if __name__ == '__main__':
main()
|