File size: 7,408 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script is to compute global and speaker-level feature statistics for a given TTS training manifest.

This script should be run after compute_features.py as it loads the precomputed feature data.

$ python <nemo_root_path>/scripts/dataset_processing/tts/compute_feature_stats.py \
    --feature_config_path=<nemo_root_path>/examples/tts/conf/features/feature_22050.yaml
    --manifest_path=<data_root_path>/manifest1.json \
    --manifest_path=<data_root_path>/manifest2.json \
    --audio_dir=<data_root_path>/audio1 \
    --audio_dir=<data_root_path>/audio2 \
    --feature_dir=<data_root_path>/features1 \
    --feature_dir=<data_root_path>/features2 \
    --stats_path=<data_root_path>/feature_stats.json

The output dictionary will contain the feature statistics for every speaker, as well as a "default" entry
with the global statistics.

For example:

{
    "default": {
        "pitch_mean": 100.0,
        "pitch_std": 50.0,
        "energy_mean": 7.5,
        "energy_std": 4.5
    },
    "speaker1": {
        "pitch_mean": 105.0,
        "pitch_std": 45.0,
        "energy_mean": 7.0,
        "energy_std": 5.0
    },
    "speaker2": {
        "pitch_mean": 110.0,
        "pitch_std": 30.0,
        "energy_mean": 5.0,
        "energy_std": 2.5
    }
}

"""

import argparse
import json
from collections import defaultdict
from pathlib import Path
from typing import List, Tuple

import torch
from hydra.utils import instantiate
from omegaconf import OmegaConf
from tqdm import tqdm

from nemo.collections.asr.parts.utils.manifest_utils import read_manifest


def get_args():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Compute TTS feature statistics.",
    )
    parser.add_argument(
        "--feature_config_path", required=True, type=Path, help="Path to feature config file.",
    )
    parser.add_argument(
        "--manifest_path", required=True, type=Path, action="append", help="Path(s) to training manifest.",
    )
    parser.add_argument(
        "--audio_dir", required=True, type=Path, action="append", help="Path(s) to base directory with audio data.",
    )
    parser.add_argument(
        "--feature_dir",
        required=True,
        type=Path,
        action="append",
        help="Path(s) to directory where feature data was stored.",
    )
    parser.add_argument(
        "--feature_names", default="pitch,energy", type=str, help="Comma separated list of features to process.",
    )
    parser.add_argument(
        "--mask_field",
        default="voiced_mask",
        type=str,
        help="If provided, stat computation will ignore non-masked frames.",
    )
    parser.add_argument(
        "--stats_path",
        default=Path("feature_stats.json"),
        type=Path,
        help="Path to output JSON file with dataset feature statistics.",
    )
    parser.add_argument(
        "--overwrite",
        action=argparse.BooleanOptionalAction,
        help="Whether to overwrite the output stats file if it exists.",
    )

    args = parser.parse_args()
    return args


def _compute_stats(values: List[torch.Tensor]) -> Tuple[float, float]:
    values_tensor = torch.cat(values, dim=0)
    mean = values_tensor.mean().item()
    std = values_tensor.std(dim=0).item()
    return mean, std


def main():
    args = get_args()

    feature_config_path = args.feature_config_path
    manifest_paths = args.manifest_path
    audio_dirs = args.audio_dir
    feature_dirs = args.feature_dir
    feature_name_str = args.feature_names
    mask_field = args.mask_field
    stats_path = args.stats_path
    overwrite = args.overwrite

    if not (len(manifest_paths) == len(audio_dirs) == len(feature_dirs)):
        raise ValueError(
            f"Need same number of manifest, audio_dir, and feature_dir. Received: "
            f"{len(manifest_paths)}, "
            f"{len(audio_dirs)}, "
            f"{len(feature_dirs)}"
        )

    for (manifest_path, audio_dir, feature_dir) in zip(manifest_paths, audio_dirs, feature_dirs):
        if not manifest_path.exists():
            raise ValueError(f"Manifest {manifest_path} does not exist.")

        if not audio_dir.exists():
            raise ValueError(f"Audio directory {audio_dir} does not exist.")

        if not feature_dir.exists():
            raise ValueError(
                f"Feature directory {feature_dir} does not exist. "
                f"Please check that the path is correct and that you ran compute_features.py"
            )

    if stats_path.exists():
        if overwrite:
            print(f"Will overwrite existing stats path: {stats_path}")
        else:
            raise ValueError(f"Stats path already exists: {stats_path}")

    feature_config = OmegaConf.load(feature_config_path)
    feature_config = instantiate(feature_config)
    featurizer_dict = feature_config.featurizers

    print(f"Found featurizers for {list(featurizer_dict.keys())}.")
    featurizers = featurizer_dict.values()

    feature_names = feature_name_str.split(",")
    # For each feature, we have a dictionary mapping speaker IDs to a list containing all features
    # for that speaker
    feature_stats = {name: defaultdict(list) for name in feature_names}

    for (manifest_path, audio_dir, feature_dir) in zip(manifest_paths, audio_dirs, feature_dirs):
        entries = read_manifest(manifest_path)

        for entry in tqdm(entries):
            speaker = entry["speaker"]

            entry_dict = {}
            for featurizer in featurizers:
                feature_dict = featurizer.load(manifest_entry=entry, audio_dir=audio_dir, feature_dir=feature_dir)
                entry_dict.update(feature_dict)

            if mask_field:
                mask = entry_dict[mask_field]
            else:
                mask = None

            for feature_name in feature_names:
                values = entry_dict[feature_name]
                if mask is not None:
                    values = values[mask]

                feature_stat_dict = feature_stats[feature_name]
                feature_stat_dict["default"].append(values)
                feature_stat_dict[speaker].append(values)

    stat_dict = defaultdict(dict)
    for feature_name in feature_names:
        mean_key = f"{feature_name}_mean"
        std_key = f"{feature_name}_std"
        feature_stat_dict = feature_stats[feature_name]
        for speaker_id, values in feature_stat_dict.items():
            speaker_mean, speaker_std = _compute_stats(values)
            stat_dict[speaker_id][mean_key] = speaker_mean
            stat_dict[speaker_id][std_key] = speaker_std

    with open(stats_path, 'w', encoding="utf-8") as stats_f:
        json.dump(stat_dict, stats_f, indent=4)


if __name__ == "__main__":
    main()