File size: 6,890 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is to generate mel spectrograms from a Fastpitch model checkpoint. Please see general usage below. It runs
on GPUs by default, but you can add `--num-workers 5 --cpu` as an option to run on CPUs.
$ python scripts/dataset_processing/tts/generate_mels.py \
--fastpitch-model-ckpt ./models/fastpitch/multi_spk/FastPitch--val_loss\=1.4473-epoch\=209.ckpt \
--input-json-manifests /home/xueyang/HUI-Audio-Corpus-German-clean/test_manifest_text_normed_phonemes.json
--output-json-manifest-root /home/xueyang/experiments/multi_spk_tts_de
"""
import argparse
import json
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
from joblib import Parallel, delayed
from tqdm import tqdm
from nemo.collections.tts.models import FastPitchModel
from nemo.collections.tts.parts.utils.tts_dataset_utils import (
BetaBinomialInterpolator,
beta_binomial_prior_distribution,
)
from nemo.utils import logging
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Generate mel spectrograms with pretrained FastPitch model, and create manifests for finetuning Hifigan.",
)
parser.add_argument(
"--fastpitch-model-ckpt",
required=True,
type=Path,
help="Specify a full path of a fastpitch model checkpoint with the suffix of either .ckpt or .nemo.",
)
parser.add_argument(
"--input-json-manifests",
nargs="+",
required=True,
type=Path,
help="Specify a full path of a JSON manifest. You could add multiple manifests.",
)
parser.add_argument(
"--output-json-manifest-root",
required=True,
type=Path,
help="Specify a full path of output root that would contain new manifests.",
)
parser.add_argument(
"--num-workers",
default=-1,
type=int,
help="Specify the max number of concurrently Python workers processes. "
"If -1 all CPUs are used. If 1 no parallel computing is used.",
)
parser.add_argument("--cpu", action='store_true', default=False, help="Generate mel spectrograms using CPUs.")
args = parser.parse_args()
return args
def __load_wav(audio_file):
with sf.SoundFile(audio_file, 'r') as f:
samples = f.read(dtype='float32')
return samples.transpose()
def __generate_mels(entry, spec_model, device, use_beta_binomial_interpolator, mel_root):
# Generate a spectrograms (we need to use ground truth alignment for correct matching between audio and mels)
audio = __load_wav(entry["audio_filepath"])
audio = torch.from_numpy(audio).unsqueeze(0).to(device)
audio_len = torch.tensor(audio.shape[1], dtype=torch.long, device=device).unsqueeze(0)
if spec_model.fastpitch.speaker_emb is not None and "speaker" in entry:
speaker = torch.tensor([entry['speaker']]).to(device)
else:
speaker = None
with torch.no_grad():
if "normalized_text" in entry:
text = spec_model.parse(entry["normalized_text"], normalize=False)
else:
text = spec_model.parse(entry['text'])
text_len = torch.tensor(text.shape[-1], dtype=torch.long, device=device).unsqueeze(0)
spect, spect_len = spec_model.preprocessor(input_signal=audio, length=audio_len)
# Generate attention prior and spectrogram inputs for HiFi-GAN
if use_beta_binomial_interpolator:
beta_binomial_interpolator = BetaBinomialInterpolator()
attn_prior = (
torch.from_numpy(beta_binomial_interpolator(spect_len.item(), text_len.item()))
.unsqueeze(0)
.to(text.device)
)
else:
attn_prior = (
torch.from_numpy(beta_binomial_prior_distribution(text_len.item(), spect_len.item()))
.unsqueeze(0)
.to(text.device)
)
spectrogram = spec_model.forward(
text=text, input_lens=text_len, spec=spect, mel_lens=spect_len, attn_prior=attn_prior, speaker=speaker,
)[0]
save_path = mel_root / f"{Path(entry['audio_filepath']).stem}.npy"
np.save(save_path, spectrogram[0].to('cpu').numpy())
entry["mel_filepath"] = str(save_path)
return entry
def main():
args = get_args()
ckpt_path = args.fastpitch_model_ckpt
input_manifest_filepaths = args.input_json_manifests
output_json_manifest_root = args.output_json_manifest_root
mel_root = output_json_manifest_root / "mels"
mel_root.mkdir(exist_ok=True, parents=True)
# load pretrained FastPitch model checkpoint
suffix = ckpt_path.suffix
if suffix == ".nemo":
spec_model = FastPitchModel.restore_from(ckpt_path).eval()
elif suffix == ".ckpt":
spec_model = FastPitchModel.load_from_checkpoint(ckpt_path).eval()
else:
raise ValueError(f"Unsupported suffix: {suffix}")
if not args.cpu:
spec_model.cuda()
device = spec_model.device
use_beta_binomial_interpolator = spec_model.cfg.train_ds.dataset.get("use_beta_binomial_interpolator", False)
for manifest in input_manifest_filepaths:
logging.info(f"Processing {manifest}.")
entries = []
with open(manifest, "r") as fjson:
for line in fjson:
entries.append(json.loads(line.strip()))
if device == "cpu":
new_entries = Parallel(n_jobs=args.num_workers)(
delayed(__generate_mels)(entry, spec_model, device, use_beta_binomial_interpolator, mel_root)
for entry in entries
)
else:
new_entries = []
for entry in tqdm(entries):
new_entry = __generate_mels(entry, spec_model, device, use_beta_binomial_interpolator, mel_root)
new_entries.append(new_entry)
mel_manifest_path = output_json_manifest_root / f"{manifest.stem}_mel{manifest.suffix}"
with open(mel_manifest_path, "w") as fmel:
for entry in new_entries:
fmel.write(json.dumps(entry) + "\n")
logging.info(f"Processing {manifest} is complete --> {mel_manifest_path}")
if __name__ == "__main__":
main()
|