File size: 7,331 Bytes
2d8da09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import sys

import torch
from pytorch_lightning import Trainer

import nemo
from nemo.core import ModelPT
from nemo.core.classes import Exportable
from nemo.core.config.pytorch_lightning import TrainerConfig
from nemo.utils import logging

try:
    from contextlib import nullcontext
except ImportError:
    # handle python < 3.7
    from contextlib import suppress as nullcontext


def get_args(argv):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=f"Export NeMo models to ONNX/Torchscript",
    )
    parser.add_argument("source", help="Source .nemo file")
    parser.add_argument("out", help="Location to write result to")
    parser.add_argument("--autocast", action="store_true", help="Use autocast when exporting")
    parser.add_argument("--runtime-check", action="store_true", help="Runtime check of exported net result")
    parser.add_argument("--verbose", default=None, help="Verbose level for logging, numeric")
    parser.add_argument("--max-batch", type=int, default=None, help="Max batch size for model export")
    parser.add_argument("--max-dim", type=int, default=None, help="Max dimension(s) for model export")
    parser.add_argument("--onnx-opset", type=int, default=None, help="ONNX opset for model export")
    parser.add_argument(
        "--cache_support", action="store_true", help="enables caching inputs for the models support it."
    )
    parser.add_argument("--device", default="cuda", help="Device to export for")
    parser.add_argument("--check-tolerance", type=float, default=0.01, help="tolerance for verification")
    parser.add_argument(
        "--export-config",
        metavar="KEY=VALUE",
        nargs='+',
        help="Set a number of key-value pairs to model.export_config dictionary "
        "(do not put spaces before or after the = sign). "
        "Note that values are always treated as strings.",
    )

    args = parser.parse_args(argv)
    return args


def nemo_export(argv):
    args = get_args(argv)
    loglevel = logging.INFO
    # assuming loglevel is bound to the string value obtained from the
    # command line argument. Convert to upper case to allow the user to
    # specify --log=DEBUG or --log=debug
    if args.verbose is not None:
        numeric_level = getattr(logging, args.verbose.upper(), None)
        if not isinstance(numeric_level, int):
            raise ValueError('Invalid log level: %s' % numeric_level)
        loglevel = numeric_level
    logging.setLevel(loglevel)
    logging.info("Logging level set to {}".format(loglevel))

    """Convert a .nemo saved model into .riva Riva input format."""
    nemo_in = args.source
    out = args.out

    # Create a PL trainer object which is required for restoring Megatron models
    cfg_trainer = TrainerConfig(
        accelerator='gpu',
        strategy="ddp",
        num_nodes=1,
        devices=1,
        # Need to set the following two to False as ExpManager will take care of them differently.
        logger=False,
        enable_checkpointing=False,
    )
    trainer = Trainer(cfg_trainer)

    logging.info("Restoring NeMo model from '{}'".format(nemo_in))
    try:
        with torch.inference_mode():
            # Restore instance from .nemo file using generic model restore_from
            model = ModelPT.restore_from(restore_path=nemo_in, trainer=trainer)
    except Exception as e:
        logging.error(
            "Failed to restore model from NeMo file : {}. Please make sure you have the latest NeMo package installed with [all] dependencies.".format(
                nemo_in
            )
        )
        raise e

    logging.info("Model {} restored from '{}'".format(model.__class__.__name__, nemo_in))

    if not isinstance(model, Exportable):
        logging.error("Your NeMo model class ({}) is not Exportable.".format(model.__class__.__name__))
        sys.exit(1)

    #
    #  Add custom export parameters here
    #
    check_trace = args.runtime_check

    in_args = {}
    max_batch = 1
    max_dim = None
    if args.max_batch is not None:
        in_args["max_batch"] = args.max_batch
        max_batch = args.max_batch
    if args.max_dim is not None:
        in_args["max_dim"] = args.max_dim
        max_dim = args.max_dim

    if args.cache_support:
        model.set_export_config({"cache_support": "True"})

    if args.export_config:
        kv = {}
        for key_value in args.export_config:
            lst = key_value.split("=")
            if len(lst) != 2:
                raise Exception("Use correct format for --export_config: k=v")
            k, v = lst
            kv[k] = v
        model.set_export_config(kv)

    autocast = nullcontext
    if args.autocast:
        autocast = torch.cuda.amp.autocast
    try:
        with autocast(), torch.no_grad(), torch.inference_mode():
            model.to(device=args.device).freeze()
            model.eval()
            input_example = None
            if check_trace and len(in_args) > 0:
                input_example = model.input_module.input_example(**in_args)
                check_trace = [input_example]
                for key, arg in in_args.items():
                    in_args[key] = (arg + 1) // 2
                input_example2 = model.input_module.input_example(**in_args)
                check_trace.append(input_example2)
                logging.info(f"Using additional check args: {in_args}")

            _, descriptions = model.export(
                out,
                input_example=input_example,
                check_trace=check_trace,
                check_tolerance=args.check_tolerance,
                onnx_opset_version=args.onnx_opset,
                verbose=bool(args.verbose),
            )

    except Exception as e:
        logging.error(
            "Export failed. Please make sure your NeMo model class ({}) has working export() and that you have the latest NeMo package installed with [all] dependencies.".format(
                model.__class__
            )
        )
        raise e


if __name__ == '__main__':
    nemo_export(sys.argv[1:])