File size: 13,439 Bytes
2d8da09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""script to annotate the the datasets with using trained attribute prediciton model.
First, we need to launch the NeMo Megatron inference server
Example:
```bash
python examples/nlp/language_modeling/megatron_gpt_eval.py \
gpt_model_file=/models/TRAINED_ATTR_PREDICTION_MODEL.nemo \
pipeline_model_parallel_split_rank=0 \
server=True \
tensor_model_parallel_size=TP_SIZE \
pipeline_model_parallel_size=PP_SIZE \
trainer.precision=bf16 \
trainer.devices=TP_SIZE*PP_SIZE \
trainer.num_nodes=1 \
web_server=False \
port=1424
```
Then, we can run this script to annotate the dataset.
Example usage:
python scripts/nlp_language_modeling/sft/attribute_annotate.py --batch_size=1 --host=localhost --input_file_name=input.jsonl --output_file_name=output.jsonl --port_num=1424
"""
import json
import os
import fire
import tqdm
from langchain.prompts.few_shot import PromptTemplate
from nemo.collections.nlp.modules.common.megatron.retrieval_services.util import text_generation
langs = [
'ar',
'bg',
'bn',
'ca',
'cs',
'da',
'de',
'el',
'en',
'eo',
'es',
'eu',
'fa',
'fi',
'fr',
'gl',
'he',
'hu',
'id',
'it',
'ja',
'ko',
'nb',
'nl',
'pl',
'pt',
'ro',
'ru',
'sk',
'sv',
'th',
'tr',
'uk',
'vi',
'zh',
]
SFT_PREFIX = """<extra_id_0>System
{system_message}"""
ONE_TRUN_WITH_VAL = """<extra_id_1>{user_name}
{user_message}
<extra_id_2>{label}
"""
ONE_TRUN_WITHOUT_VAL = """<extra_id_1>{user_name}
{user_message}
"""
SYSTEM = PromptTemplate(input_variables=["system_message"], template=SFT_PREFIX)
EXAMPLE_PROMPT_WITH_VAL = PromptTemplate(
input_variables=["user_name", "user_message", "label"], template=ONE_TRUN_WITH_VAL
)
EXAMPLE_PROMPT_WITHOUT_VAL = PromptTemplate(
input_variables=["user_name", "user_message"], template=ONE_TRUN_WITHOUT_VAL
)
selected_keys = [
'quality',
'toxicity',
'humor',
'creativity',
'violence',
'helpfulness',
'not_appropriate',
'hate_speech',
'sexual_content',
'fails_task',
'political_content',
'moral_judgement',
'lang',
]
def calculate_key(obj):
return ":".join([item['value'] for item in obj['conversations']])
def load_data(path):
with open(path, 'r', encoding='utf-8') as fin:
for line in fin:
yield json.loads(line)
def get_prompt(data_obj, turn, current_label="", label_id=0):
if len(data_obj['conversations']) < turn + 1:
return None
examples = []
for i in range(0, turn):
d = data_obj['conversations'][i]
if 'label' in d:
examples.append(
EXAMPLE_PROMPT_WITH_VAL.format(
**{'user_name': d['from'], 'user_message': d['value'], 'label': d['label']}
)
)
else:
examples.append(EXAMPLE_PROMPT_WITHOUT_VAL.format(**{'user_name': d['from'], 'user_message': d['value']}))
example_text = "".join(examples)
d = data_obj['conversations'][turn]
predict_message = EXAMPLE_PROMPT_WITHOUT_VAL.format(**{'user_name': d['from'], 'user_message': d['value']})
if label_id != 0:
current_label = current_label + ',' + selected_keys[label_id] + ':'
else:
current_label = '<extra_id_2>' + selected_keys[label_id] + ':'
return SYSTEM.format(**{'system_message': data_obj['system']}) + example_text + predict_message + current_label
def create_gen_function(host='localhost', port=5555):
def request(prompts, greedy, add_BOS, token_to_gen, min_tokens, temp, top_p, top_k, repetition, end_strings):
data = {
"sentences": prompts,
"tokens_to_generate": int(token_to_gen),
"temperature": temp,
"add_BOS": add_BOS,
"top_k": top_k,
"top_p": top_p,
"greedy": greedy,
"all_probs": False,
"repetition_penalty": repetition,
"min_tokens_to_generate": int(min_tokens),
"end_strings": end_strings,
}
response = text_generation(data, ip=host, port=port)
sentences = response['sentences']
return sentences
return request
class Worker(object):
def __init__(self, host='localhost', port=5555, progress_bar=None, output_file=None, process_lang=False):
self.req = create_gen_function(host=host, port=port)
self.fout = open(output_file, "a", encoding='utf-8')
self.progress_bar = progress_bar
self.process_lang = process_lang
def process_result(self, batch):
while True:
try:
items = [i['item'] for i in batch]
turns = [i['turn'] for i in batch]
prompts = [i['prompt'] for i in batch]
for label_id in range(1, len(selected_keys)):
results = self.req(
prompts,
greedy=True,
add_BOS=False,
token_to_gen=1,
min_tokens=1,
temp=0.1,
top_p=1.0,
top_k=1,
repetition=1.0,
end_strings=["<extra_id_1>", "<|endoftext|>"],
)
# get current value from result
current_values = []
nums = []
for result in results:
# promblem result[-1] is '\n'
current_val = result.split('quality')[-1]
current_val = 'quality' + current_val
# remove whatever after new line
current_val = current_val.split('\n')[0].strip()
# remove everything that is >= selected_keys[label_id]
splits = current_val.split(',')
filtered = []
for item in splits:
filtered.append(item)
if item.split(':')[0] == selected_keys[label_id - 1]:
nums.append(item.split(':')[1])
break
current_val = '<extra_id_2>' + ','.join(filtered)
current_values.append(current_val)
filtered_items = []
filtered_turns = []
filtered_prompts = []
filtered_current_values = []
for result, item, turn, num, current_value in zip(results, items, turns, nums, current_values):
try:
value = int(num)
except Exception as e:
print(f'error {e} when convert {num} to int')
continue
filtered_current_values.append(current_value)
filtered_items.append(item)
filtered_turns.append(turn)
if label_id < len(selected_keys):
prompt = get_prompt(item, turn, current_label=current_value, label_id=label_id)
filtered_prompts.append(prompt)
items = filtered_items
turns = filtered_turns
prompts = filtered_prompts
current_values = filtered_current_values
if self.process_lang:
results = self.req(
prompts,
greedy=True,
add_BOS=False,
token_to_gen=1,
min_tokens=1,
temp=0.1,
top_p=1.0,
top_k=1,
repetition=1.0,
end_strings=["<extra_id_1>", "<|endoftext|>"],
)
# get current value from result
current_values = []
for result in results:
# promblem result[-1] is '\n'
if result.endswith('\n'):
result = result[:-1] + '@'
current_values.append(result.split('\n')[-1])
nums = []
for result in results:
# promblem result[-1] is '\n'
current_val = result.split('quality')[-1]
current_val = 'quality' + current_val
# remove whatever after new line
current_val = current_val.split('\n')[0].strip()
# remove everything that is >= selected_keys[label_id]
splits = current_val.split(',')
filtered = []
for item in splits:
filtered.append(item)
if item.split(':')[0] == selected_keys[label_id]:
nums.append(item.split(':')[1])
break
current_val = '<extra_id_2>' + ','.join(filtered)
current_values.append(current_val)
filtered_items = []
filtered_turns = []
filtered_prompts = []
filtered_current_values = []
for result, item, turn, num, current_value in zip(results, items, turns, nums, current_values):
if num not in langs:
print(f'error {num} not in langs')
continue
filtered_current_values.append(current_value)
filtered_items.append(item)
filtered_turns.append(turn)
items = filtered_items
turns = filtered_turns
current_values = filtered_current_values
batch = []
for item, turn, current_value in zip(items, turns, current_values):
response_text = current_value[12:]
if 'label' in item['conversations'][turn]:
item['conversations'][turn]['gt_label'] = item['conversations'][turn]['label']
item['conversations'][turn]['label'] = response_text
prompt = get_prompt(item, turn + 1, current_label='', label_id=0)
if prompt is not None:
batch.append({'prompt': prompt, 'item': item, 'turn': turn + 1})
else:
self.progress_bar.update(1)
self.fout.write(json.dumps(item, ensure_ascii=False) + "\n")
self.fout.flush()
if self.progress_bar.n >= self.progress_bar.total:
break
if len(batch) == 0:
break
except Exception as e:
print(f'error {e} when processing {batch}')
# ignore the error and continue
self.progress_bar.update(1)
if self.progress_bar.n >= self.progress_bar.total:
break
def main(
batch_size=1,
host='localhost',
input_file_name='input.jsonl',
output_file_name='output.jsonl',
port_num=1424,
process_lang=True,
):
input_data = load_data(f'{input_file_name}')
output_path = f'{output_file_name}'
existing_requests = set()
if os.path.exists(output_path):
with open(output_path, 'r', encoding='utf-8') as fin:
for line in fin:
line = json.loads(line)
existing_requests.add(calculate_key(line))
print(f"Loaded {len(existing_requests)} existing requests")
filter_data = [d for d in input_data if calculate_key(d) not in existing_requests]
progress_bar = tqdm.tqdm(total=len(filter_data))
worker = Worker(
host=host, port=port_num, progress_bar=progress_bar, output_file=output_path, process_lang=process_lang
)
for batch_idx in range(0, len(filter_data), batch_size):
batch = [line for line in filter_data[batch_idx : batch_idx + batch_size]]
turns = [
0 if 'mask' not in d['conversations'][0]['from'] or d['conversations'][0]['from'] == d['mask'] else 1
for d in batch
]
task = [{'prompt': get_prompt(d, turn, "", 0), 'item': d, 'turn': turn} for d, turn in zip(batch, turns)]
worker.process_result(task)
worker.fout.close()
if __name__ == '__main__':
fire.Fire(main)
|