File size: 5,107 Bytes
6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 38057e4 6e73cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# from SoundScribe.speakerID import find_user
import datetime
import requests
import torch
import json
import cv2
import os
API_URL = 'https://bceb7f41087d-7754001953109090881.ngrok-free.app/'
def get_time():
return datetime.datetime.now().strftime('%a %d %b %Y %I:%M %p')
def load_chat():
full_history = []
sorted_list = []
prev_id = ""
with open('./database/chat_history.jsonl', 'r') as history:
for line in history:
chat_message = json.loads(line)
id = chat_message['ID']
message = chat_message['message']
if id != prev_id:
full_history.append(f"{id}: {message}\n")
else:
full_history[-1] += message+"\n"
prev_id = id
for chat in full_history:
if chat.startswith("CRYSTAL: ") or chat.startswith("Helper: "):
sorted_list[-1] += "\n"+chat
else:
sorted_list.append(chat)
return sorted_list
def record_chat(role, message):
new_message = {
"ID": role,
"message": message[0]
}
with open('./database/chat_history.jsonl', 'a') as history:
history.write(json.dumps(new_message) + '\n')
def check_api_usage():
USE_CLOUD_API = False
if os.path.isdir("models"):
if requests.get(API_URL).ok:
choice = input(
"CRYSTAL CLOUD API HAS BEEN DETECTED.\n"
"Would you like to:\n"
"\t1. Use Cloud API Computing\n"
"\t2. Use On-Device Calculations\n"
"Enter your choice (1/2): ")
USE_CLOUD_API = choice == "1"
if USE_CLOUD_API:
print("RUNNING ON CLOUD")
else:
print("RUNNING LOCALLY")
else:
print("CRYSTAL Cloud API not reachable.")
else:
raise RuntimeError(
"Unauthorized access! This action will be reported immediately!")
return USE_CLOUD_API
def perceptrix(prompt):
url = API_URL+"perceptrix"
payload = {'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def robotix(prompt):
url = API_URL+"robotix"
payload = {'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def identify_objects_from_text(prompt):
url = API_URL+"identify_objects_from_text"
payload = {'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def search_keyword(prompt):
url = API_URL+"search_keyword"
payload = {'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def answer_question(prompt, frame):
url = API_URL+"vqa"
if type(frame) == str:
frame = cv2.imread(frame)
_, image_data = cv2.imencode('.jpg', frame)
image = image_data.tolist()
payload = {'image': image,
'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def find_object_description(prompt, frame):
url = API_URL+"object_description"
if type(frame) == str:
frame = cv2.imread(frame)
_, image_data = cv2.imencode('.jpg', frame)
image = image_data.tolist()
payload = {'image': image,
'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["message"]
def locate_object(prompt, frame):
url = API_URL+"locate_object"
if type(frame) == str:
frame = cv2.imread(frame)
_, image_data = cv2.imencode('.jpg', frame)
image = image_data.tolist()
payload = {'image': image,
'prompt': prompt}
headers = {'Content-Type': 'application/json'}
response = requests.post(url, json=payload, headers=headers)
return response.json()["annotated_image"], response.json()["message"]
def setup_device():
if torch.backends.mps.is_available():
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
return device
def transcribe(audio):
url = API_URL + "transcribe"
with open(audio, 'rb') as audio_file:
files = {'audio': (audio, audio_file)}
response = requests.post(url, files=files)
transcription = response.json()["message"]
print(transcription)
# user = find_user("database/recording.wav")
user = "Vatsal"
if user != "Crystal":
with open('./database/input.txt', 'w', encoding="utf-8") as write_to:
write_to.write(transcription[1:])
return transcription, user
|