File size: 11,617 Bytes
6e73cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# Copyright 2022 MosaicML LLM Foundry authors
# SPDX-License-Identifier: Apache-2.0

from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from transformers import PreTrainedTokenizer


class TiktokenTokenizerWrapper(PreTrainedTokenizer):
    """A thin wrapper around tiktoken to make it compatible with Hugging Face.

    tokenizers.

    See HuggingFace for further documentation on general tokenizer methods.
    """

    model_input_names = ['input_ids', 'attention_mask']

    def __init__(self,
                 model_name: Optional[str] = None,
                 encoding_name: Optional[str] = None,
                 add_bos_token: bool = False,
                 unk_token: Optional[str] = '<|endoftext|>',
                 eos_token: Optional[str] = '<|endoftext|>',
                 bos_token: Optional[str] = '<|endoftext|>',
                 pad_token: Optional[str] = None,
                 **kwargs: Dict[str, Any]):
        """Constructor creates a tiktoken tokenizer to use as the underlying.

        tokenizer.

        Args:
            model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
                Either model_name or encoding_name must be set, but not both.
            encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
                Either model_name or encoding_name must be set, but not both.
            add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
            unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
            eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
            bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
            pad_token (Optional[str], optional): The pad token. Defaults to None.
        """
        try:
            import tiktoken
        except:
            raise ImportError(
                'You need to install tiktoken to use TiktokenTokenizerWrapper.')

        if model_name is not None and encoding_name is not None:
            raise ValueError(
                'You need to specify either model_name or encoding_name, not both.'
            )

        self.model_name = model_name
        self.encoding_name = encoding_name

        if self.model_name is not None:
            self.encoding = tiktoken.encoding_for_model(  # type: ignore (thirdParty)
                self.model_name)
        elif self.encoding_name is not None:
            self.encoding = tiktoken.get_encoding(  # type: ignore (thirdParty)
                self.encoding_name)
        else:
            raise ValueError(
                'You need to specify either model_name or encoding_name.')

        self.add_bos_token = add_bos_token

        super().__init__(model_name=model_name,
                         encoding_name=encoding_name,
                         add_bos_token=add_bos_token,
                         unk_token=unk_token,
                         eos_token=eos_token,
                         bos_token=bos_token,
                         pad_token=pad_token,
                         **kwargs)

    @property
    def vocab_size(self) -> int:
        """Returns vocab size."""
        return self.encoding.n_vocab

    @property
    def is_fast(self) -> bool:
        return False

    def get_vocab(self) -> Dict[str, int]:
        """Returns vocab as a dict."""
        vocab = {}
        for i in range(self.vocab_size):
            try:
                # need to try this first, so that we get a proper KeyError,
                # otherwise it crashes in the rust code
                _ = self.encoding.decode_single_token_bytes(i)
                vocab[self.encoding.decode([i])] = i
            except KeyError:
                pass

        return vocab

    def _tokenize(self, text: str) -> List[int]:
        """Returns a tokenized string.

        Note: We have slightly redefined the expected contract between this method and
        the _convert_token_to_id method. Normally, this method turns a string, into a list of strings,
        and then the _convert_token_to_id method turns that list of strings into a list of integers.
        However, not all vocab indices can be decoded into a string, so instead we just return the integers
        from this function, and have adjusted the _convert_token_to_id method to handle integers as well as strings.
        The only use of _tokenize that I could find was in this way, so this _should_ be safe.
        """
        if not isinstance(text, str):
            raise ValueError(
                f'Expected a string input to _tokenize but got {type(text)}.')

        tokens = [t for t in self.encoding.encode(text, allowed_special='all')]

        return tokens

    def _convert_token_to_id(self, token: Union[int, str]) -> int:
        """Converts a token (str) into an id using the vocab."""
        if isinstance(token, int):
            return token

        return self.encoding.encode(token, allowed_special='all')[0]

    def _convert_id_to_token(self, index: int) -> str:
        """Converts an index (integer) into a token (str) using the vocab."""
        return self.encoding.decode([index])

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """Converts a sequence of tokens (string) in a single string."""
        return ''.join(tokens)

    def convert_ids_to_tokens(
            self,
            ids: Union[int, List[int]],
            skip_special_tokens: bool = False) -> Union[str, List[str]]:
        """Converts a single index or a sequence of indices into a token or a.

        sequence of tokens, using the vocabulary and added tokens.

        Args:
            ids (`int` or `List[int]`):
                The token id (or token ids) to convert to tokens.
            skip_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not to remove special tokens in the decoding.

        Returns:
            `str` or `List[str]`: The decoded token(s).
        """
        if isinstance(ids, int):
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]

            return self._convert_id_to_token(ids)

        # current_stream will collect multiple tokens, and then separately add items
        # for each added token. This is done so that decode works properly with token ids
        # that cannot be represented naively in utf-8.
        tokens = []
        current_stream = []
        for index in ids:
            if skip_special_tokens and index in self.all_special_ids:
                continue

            if index in self.added_tokens_decoder:
                tokens.append(self.encoding.decode(current_stream))
                current_stream = []
                tokens.append(self.added_tokens_decoder[index])
            else:
                current_stream.append(index)

        if len(current_stream) > 0:
            tokens.append(self.encoding.decode(current_stream))
        return tokens

    def build_inputs_with_special_tokens(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None) -> List[int]:
        if self.add_bos_token:
            bos_token_ids = [self.bos_token_id]
        else:
            bos_token_ids = []

        output = bos_token_ids + token_ids_0

        if token_ids_1 is None:
            return output

        return output + bos_token_ids + token_ids_1

    def get_special_tokens_mask(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None,
            already_has_special_tokens: bool = False) -> List[int]:
        """Retrieves sequence ids from a token list that has no special tokens.

        Function copied from
        https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295

        added. This method is called when adding special tokens using the
        tokenizer `prepare_for_model` or `encode_plus` methods.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0,
                token_ids_1=token_ids_1,
                already_has_special_tokens=True)

        if not self.add_bos_token:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0,
                token_ids_1=token_ids_1,
                already_has_special_tokens=False)

        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0))
        return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))

    def create_token_type_ids_from_sequences(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None) -> List[int]:
        sep = [self.sep_token_id]

        if token_ids_1 is None:
            return len(token_ids_0 + sep) * [0]
        return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    def save_vocabulary(self,
                        save_directory: str,
                        filename_prefix: Optional[str] = None) -> Tuple[str]:

        # ignore the below type to keep the original signature
        # we are knowingly breaking the signature here, although not 100% certain
        # it doesn't have side effects
        # There is some code in huggingface that calls this function to get the vocab files,
        # but it doesn't seem to access them (or at least checks for their existence
        # before accessing them)
        return (None, None)  # type: ignore

    def sanitize_special_tokens(self) -> int:
        """Make sure that all the special tokens attributes of the tokenizer.

        (`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
        vocabulary.

        Add the missing ones to the vocabulary if needed.

        Return:
            `int`: The number of tokens added in the vocabulary during the operation.
        """
        actual_new_tokens = []
        for token in self.all_special_tokens_extended:
            encoded = self.encoding.encode(token, allowed_special='all')
            if len(encoded) > 1:
                actual_new_tokens.append(token)

        return self.add_tokens(actual_new_tokens, special_tokens=True)

    def construct_logit_tensor(self, logprobs: Dict[str,
                                                    float]) -> torch.Tensor:
        """Construct tensor of shape (vocab_size,) mapping words to logprobs.

        Args:
            logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model.
        """
        tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size))
        for k in logprobs:
            encoding = self(k)['input_ids']
            idx = encoding[0]
            tensor[idx] = logprobs[k]
        return tensor


TiktokenTokenizerWrapper.register_for_auto_class()