|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
class TiktokenTokenizerWrapper(PreTrainedTokenizer): |
|
"""A thin wrapper around tiktoken to make it compatible with Hugging Face. |
|
|
|
tokenizers. |
|
|
|
See HuggingFace for further documentation on general tokenizer methods. |
|
""" |
|
|
|
model_input_names = ['input_ids', 'attention_mask'] |
|
|
|
def __init__(self, |
|
model_name: Optional[str] = None, |
|
encoding_name: Optional[str] = None, |
|
add_bos_token: bool = False, |
|
unk_token: Optional[str] = '<|endoftext|>', |
|
eos_token: Optional[str] = '<|endoftext|>', |
|
bos_token: Optional[str] = '<|endoftext|>', |
|
pad_token: Optional[str] = None, |
|
**kwargs: Dict[str, Any]): |
|
"""Constructor creates a tiktoken tokenizer to use as the underlying. |
|
|
|
tokenizer. |
|
|
|
Args: |
|
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None. |
|
Either model_name or encoding_name must be set, but not both. |
|
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None. |
|
Either model_name or encoding_name must be set, but not both. |
|
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False. |
|
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'. |
|
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'. |
|
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'. |
|
pad_token (Optional[str], optional): The pad token. Defaults to None. |
|
""" |
|
try: |
|
import tiktoken |
|
except: |
|
raise ImportError( |
|
'You need to install tiktoken to use TiktokenTokenizerWrapper.') |
|
|
|
if model_name is not None and encoding_name is not None: |
|
raise ValueError( |
|
'You need to specify either model_name or encoding_name, not both.' |
|
) |
|
|
|
self.model_name = model_name |
|
self.encoding_name = encoding_name |
|
|
|
if self.model_name is not None: |
|
self.encoding = tiktoken.encoding_for_model( |
|
self.model_name) |
|
elif self.encoding_name is not None: |
|
self.encoding = tiktoken.get_encoding( |
|
self.encoding_name) |
|
else: |
|
raise ValueError( |
|
'You need to specify either model_name or encoding_name.') |
|
|
|
self.add_bos_token = add_bos_token |
|
|
|
super().__init__(model_name=model_name, |
|
encoding_name=encoding_name, |
|
add_bos_token=add_bos_token, |
|
unk_token=unk_token, |
|
eos_token=eos_token, |
|
bos_token=bos_token, |
|
pad_token=pad_token, |
|
**kwargs) |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
"""Returns vocab size.""" |
|
return self.encoding.n_vocab |
|
|
|
@property |
|
def is_fast(self) -> bool: |
|
return False |
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
"""Returns vocab as a dict.""" |
|
vocab = {} |
|
for i in range(self.vocab_size): |
|
try: |
|
|
|
|
|
_ = self.encoding.decode_single_token_bytes(i) |
|
vocab[self.encoding.decode([i])] = i |
|
except KeyError: |
|
pass |
|
|
|
return vocab |
|
|
|
def _tokenize(self, text: str) -> List[int]: |
|
"""Returns a tokenized string. |
|
|
|
Note: We have slightly redefined the expected contract between this method and |
|
the _convert_token_to_id method. Normally, this method turns a string, into a list of strings, |
|
and then the _convert_token_to_id method turns that list of strings into a list of integers. |
|
However, not all vocab indices can be decoded into a string, so instead we just return the integers |
|
from this function, and have adjusted the _convert_token_to_id method to handle integers as well as strings. |
|
The only use of _tokenize that I could find was in this way, so this _should_ be safe. |
|
""" |
|
if not isinstance(text, str): |
|
raise ValueError( |
|
f'Expected a string input to _tokenize but got {type(text)}.') |
|
|
|
tokens = [t for t in self.encoding.encode(text, allowed_special='all')] |
|
|
|
return tokens |
|
|
|
def _convert_token_to_id(self, token: Union[int, str]) -> int: |
|
"""Converts a token (str) into an id using the vocab.""" |
|
if isinstance(token, int): |
|
return token |
|
|
|
return self.encoding.encode(token, allowed_special='all')[0] |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
"""Converts an index (integer) into a token (str) using the vocab.""" |
|
return self.encoding.decode([index]) |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
return ''.join(tokens) |
|
|
|
def convert_ids_to_tokens( |
|
self, |
|
ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False) -> Union[str, List[str]]: |
|
"""Converts a single index or a sequence of indices into a token or a. |
|
|
|
sequence of tokens, using the vocabulary and added tokens. |
|
|
|
Args: |
|
ids (`int` or `List[int]`): |
|
The token id (or token ids) to convert to tokens. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
|
|
Returns: |
|
`str` or `List[str]`: The decoded token(s). |
|
""" |
|
if isinstance(ids, int): |
|
if ids in self.added_tokens_decoder: |
|
return self.added_tokens_decoder[ids] |
|
|
|
return self._convert_id_to_token(ids) |
|
|
|
|
|
|
|
|
|
tokens = [] |
|
current_stream = [] |
|
for index in ids: |
|
if skip_special_tokens and index in self.all_special_ids: |
|
continue |
|
|
|
if index in self.added_tokens_decoder: |
|
tokens.append(self.encoding.decode(current_stream)) |
|
current_stream = [] |
|
tokens.append(self.added_tokens_decoder[index]) |
|
else: |
|
current_stream.append(index) |
|
|
|
if len(current_stream) > 0: |
|
tokens.append(self.encoding.decode(current_stream)) |
|
return tokens |
|
|
|
def build_inputs_with_special_tokens( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
if self.add_bos_token: |
|
bos_token_ids = [self.bos_token_id] |
|
else: |
|
bos_token_ids = [] |
|
|
|
output = bos_token_ids + token_ids_0 |
|
|
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + bos_token_ids + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False) -> List[int]: |
|
"""Retrieves sequence ids from a token list that has no special tokens. |
|
|
|
Function copied from |
|
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295 |
|
|
|
added. This method is called when adding special tokens using the |
|
tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, |
|
token_ids_1=token_ids_1, |
|
already_has_special_tokens=True) |
|
|
|
if not self.add_bos_token: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, |
|
token_ids_1=token_ids_1, |
|
already_has_special_tokens=False) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
sep = [self.sep_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + sep) * [0] |
|
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, |
|
save_directory: str, |
|
filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (None, None) |
|
|
|
def sanitize_special_tokens(self) -> int: |
|
"""Make sure that all the special tokens attributes of the tokenizer. |
|
|
|
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the |
|
vocabulary. |
|
|
|
Add the missing ones to the vocabulary if needed. |
|
|
|
Return: |
|
`int`: The number of tokens added in the vocabulary during the operation. |
|
""" |
|
actual_new_tokens = [] |
|
for token in self.all_special_tokens_extended: |
|
encoded = self.encoding.encode(token, allowed_special='all') |
|
if len(encoded) > 1: |
|
actual_new_tokens.append(token) |
|
|
|
return self.add_tokens(actual_new_tokens, special_tokens=True) |
|
|
|
def construct_logit_tensor(self, logprobs: Dict[str, |
|
float]) -> torch.Tensor: |
|
"""Construct tensor of shape (vocab_size,) mapping words to logprobs. |
|
|
|
Args: |
|
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model. |
|
""" |
|
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size)) |
|
for k in logprobs: |
|
encoding = self(k)['input_ids'] |
|
idx = encoding[0] |
|
tensor[idx] = logprobs[k] |
|
return tensor |
|
|
|
|
|
TiktokenTokenizerWrapper.register_for_auto_class() |
|
|