crystal-technologies
commited on
Commit
•
38057e4
1
Parent(s):
e34adac
Upload 1671 files
Browse files- .gitattributes +6 -0
- CircumSpect/object_detection/__pycache__/detect_objects.cpython-39.pyc +0 -0
- CircumSpect/object_detection/detect_objects.py +1 -1
- SoundScribe/transcribe.py +1 -3
- api_host.py +63 -110
- crystal.py +5 -4
- database/current_frame.jpg +0 -0
- database/input.txt +1 -1
- database/notes.txt +0 -0
- database/recording.wav +0 -0
- requirements.txt +1 -1
- utils.py +19 -7
.gitattributes
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CircumSpect/object_detection/weights/groundingdino_swint_ogc.pth filter=lfs diff=lfs merge=lfs -text
|
2 |
+
Perceptrix/finetune/scripts/eval/local_data/reading_comprehension/coqa.jsonl filter=lfs diff=lfs merge=lfs -text
|
3 |
+
Perceptrix/finetune/scripts/eval/local_data/reading_comprehension/narrative_qa.jsonl filter=lfs diff=lfs merge=lfs -text
|
4 |
+
Perceptrix/finetune/scripts/eval/local_data/symbolic_problem_solving/bigbench_elementary_math_qa.jsonl filter=lfs diff=lfs merge=lfs -text
|
5 |
+
SoundScribe/SpeakerID/tools/speech_data_explorer/screenshot.png filter=lfs diff=lfs merge=lfs -text
|
6 |
+
SoundScribe/voices/Vatsal.wav filter=lfs diff=lfs merge=lfs -text
|
CircumSpect/object_detection/__pycache__/detect_objects.cpython-39.pyc
CHANGED
Binary files a/CircumSpect/object_detection/__pycache__/detect_objects.cpython-39.pyc and b/CircumSpect/object_detection/__pycache__/detect_objects.cpython-39.pyc differ
|
|
CircumSpect/object_detection/detect_objects.py
CHANGED
@@ -83,5 +83,5 @@ def locate_object(objects, image):
|
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
frame, coord = locate_object(
|
86 |
-
"https://images.nationalgeographic.org/image/upload/v1638890052/EducationHub/photos/robots-3d-landing-page.jpg"
|
87 |
print(coord)
|
|
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
frame, coord = locate_object(
|
86 |
+
"drawer", "https://images.nationalgeographic.org/image/upload/v1638890052/EducationHub/photos/robots-3d-landing-page.jpg")
|
87 |
print(coord)
|
SoundScribe/transcribe.py
CHANGED
@@ -26,7 +26,6 @@ queued = False
|
|
26 |
def transcribe(audio):
|
27 |
result = model.transcribe(audio)
|
28 |
transcription = result['text']
|
29 |
-
print(transcription)
|
30 |
# user = find_user("database/recording.wav")
|
31 |
user = "Vatsal"
|
32 |
if user != "Crystal":
|
@@ -73,8 +72,7 @@ def listen(model, stream):
|
|
73 |
if queued:
|
74 |
transcription()
|
75 |
queued = False
|
76 |
-
|
77 |
-
print("No audio found")
|
78 |
silence_duration = 0
|
79 |
output_file.close()
|
80 |
audio_data = None
|
|
|
26 |
def transcribe(audio):
|
27 |
result = model.transcribe(audio)
|
28 |
transcription = result['text']
|
|
|
29 |
# user = find_user("database/recording.wav")
|
30 |
user = "Vatsal"
|
31 |
if user != "Crystal":
|
|
|
72 |
if queued:
|
73 |
transcription()
|
74 |
queued = False
|
75 |
+
|
|
|
76 |
silence_duration = 0
|
77 |
output_file.close()
|
78 |
audio_data = None
|
api_host.py
CHANGED
@@ -9,134 +9,87 @@ import os
|
|
9 |
|
10 |
model = whisper.load_model("base")
|
11 |
|
12 |
-
|
13 |
def transcribe(audio):
|
14 |
result = model.transcribe(audio)
|
15 |
transcription = result['text']
|
16 |
print(transcription)
|
17 |
return transcription
|
18 |
|
19 |
-
|
20 |
app = Flask(__name__)
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
def display_image():
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
image_data = np.array(image_data, dtype=np.uint8)
|
30 |
-
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
|
31 |
-
|
32 |
-
cv2.imwrite('API.jpg', image)
|
33 |
-
answer, annotated_image = locate_object(prompt, "API.jpg")
|
34 |
-
|
35 |
-
return jsonify({'message': answer, 'annotated_image': annotated_image})
|
36 |
-
|
37 |
except Exception as e:
|
|
|
38 |
return jsonify({'error': str(e)})
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
try:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
cv2.imwrite('API.jpg', image)
|
51 |
-
answer = answer_question(prompt, "API.jpg")
|
52 |
-
|
53 |
-
return jsonify({'message': answer})
|
54 |
-
|
55 |
except Exception as e:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
@app.route('/object_description', methods=['POST'])
|
60 |
-
def display_image():
|
61 |
-
try:
|
62 |
-
image_data = request.json['image_data']
|
63 |
-
|
64 |
-
image_data = np.array(image_data, dtype=np.uint8)
|
65 |
-
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
|
66 |
-
|
67 |
-
cv2.imwrite('API.jpg', image)
|
68 |
-
answer = find_object_description("API.jpg")
|
69 |
-
|
70 |
-
return jsonify({'message': answer})
|
71 |
-
|
72 |
-
except Exception as e:
|
73 |
-
return jsonify({'error': str(e)})
|
74 |
-
|
75 |
-
|
76 |
-
@app.route('/perceptrix', methods=['POST'])
|
77 |
-
def display_image():
|
78 |
-
try:
|
79 |
-
prompt = request.json['prompt']
|
80 |
-
|
81 |
-
answer = perceptrix(prompt)
|
82 |
-
|
83 |
-
return jsonify({'message': answer})
|
84 |
-
|
85 |
-
except Exception as e:
|
86 |
-
return jsonify({'error': str(e)})
|
87 |
-
|
88 |
-
|
89 |
-
@app.route('/robotix', methods=['POST'])
|
90 |
-
def display_image():
|
91 |
-
try:
|
92 |
-
prompt = request.json['prompt']
|
93 |
-
|
94 |
-
answer = robotix(prompt)
|
95 |
-
|
96 |
-
return jsonify({'message': answer})
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
return jsonify({'error': str(e)})
|
100 |
-
|
101 |
-
|
102 |
-
@app.route('/search_keyword', methods=['POST'])
|
103 |
-
def display_image():
|
104 |
-
try:
|
105 |
-
prompt = request.json['prompt']
|
106 |
-
|
107 |
-
answer = search_keyword(prompt)
|
108 |
-
|
109 |
-
return jsonify({'message': answer})
|
110 |
-
|
111 |
-
except Exception as e:
|
112 |
-
return jsonify({'error': str(e)})
|
113 |
-
|
114 |
-
|
115 |
-
@app.route('/identify_objects_from_text', methods=['POST'])
|
116 |
-
def display_image():
|
117 |
-
try:
|
118 |
-
prompt = request.json['prompt']
|
119 |
-
|
120 |
-
answer = identify_objects_from_text(prompt)
|
121 |
-
|
122 |
-
return jsonify({'message': answer})
|
123 |
-
|
124 |
-
except Exception as e:
|
125 |
-
return jsonify({'error': str(e)})
|
126 |
-
|
127 |
-
|
128 |
-
@app.route('/transcribe', methods=['POST'])
|
129 |
-
def upload_audio():
|
130 |
-
audio_file = request.files['audio']
|
131 |
-
|
132 |
-
filename = os.path.join("database", audio_file.filename)
|
133 |
-
audio_file.save(filename)
|
134 |
-
return jsonify({'message': transcribe(filename)})
|
135 |
-
|
136 |
|
137 |
def run_app():
|
138 |
app.run(port=7777)
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
runner = threading.Thread(target=run_app)
|
142 |
-
runner.start()
|
|
|
9 |
|
10 |
model = whisper.load_model("base")
|
11 |
|
|
|
12 |
def transcribe(audio):
|
13 |
result = model.transcribe(audio)
|
14 |
transcription = result['text']
|
15 |
print(transcription)
|
16 |
return transcription
|
17 |
|
|
|
18 |
app = Flask(__name__)
|
19 |
|
20 |
+
@app.route('/', methods=['POST', 'GET'])
|
21 |
+
def home():
|
22 |
+
return jsonify({'message': 'WORKING'})
|
23 |
|
24 |
+
def handle_request(func, *args):
|
|
|
25 |
try:
|
26 |
+
result = func(*args)
|
27 |
+
return jsonify({'message': result})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
except Exception as e:
|
29 |
+
print(e)
|
30 |
return jsonify({'error': str(e)})
|
31 |
|
32 |
+
@app.route('/locate_object', methods=['POST', 'GET'])
|
33 |
+
def _locate_object():
|
34 |
+
image_data = request.json['image']
|
35 |
+
prompt = request.json['prompt']
|
36 |
+
image_data = np.array(image_data, dtype=np.uint8)
|
37 |
+
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
|
38 |
+
cv2.imwrite('API.jpg', image)
|
39 |
+
return handle_request(locate_object, prompt, "API.jpg")
|
40 |
+
|
41 |
+
@app.route('/vqa', methods=['POST', 'GET'])
|
42 |
+
def _vqa():
|
43 |
+
image_data = request.json['image']
|
44 |
+
prompt = request.json['prompt']
|
45 |
+
image_data = np.array(image_data, dtype=np.uint8)
|
46 |
+
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
|
47 |
+
cv2.imwrite('API.jpg', image)
|
48 |
+
return handle_request(answer_question, prompt, "API.jpg")
|
49 |
+
|
50 |
+
@app.route('/object_description', methods=['POST', 'GET'])
|
51 |
+
def _object_description():
|
52 |
+
image_data = request.json['image']
|
53 |
+
image_data = np.array(image_data, dtype=np.uint8)
|
54 |
+
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
|
55 |
+
cv2.imwrite('API.jpg', image)
|
56 |
+
return handle_request(find_object_description, "API.jpg")
|
57 |
+
|
58 |
+
@app.route('/perceptrix', methods=['POST', 'GET'])
|
59 |
+
def _perceptrix():
|
60 |
+
prompt = request.json['prompt']
|
61 |
+
return handle_request(perceptrix, prompt)
|
62 |
+
|
63 |
+
@app.route('/robotix', methods=['POST', 'GET'])
|
64 |
+
def _robotix():
|
65 |
+
prompt = request.json['prompt']
|
66 |
+
return handle_request(robotix, prompt)
|
67 |
+
|
68 |
+
@app.route('/search_keyword', methods=['POST', 'GET'])
|
69 |
+
def _search_keyword():
|
70 |
+
prompt = request.json['prompt']
|
71 |
+
return handle_request(search_keyword, prompt)
|
72 |
+
|
73 |
+
@app.route('/identify_objects_from_text', methods=['POST', 'GET'])
|
74 |
+
def _identify_objects_from_text():
|
75 |
+
prompt = request.json['prompt']
|
76 |
+
return handle_request(identify_objects_from_text, prompt)
|
77 |
+
|
78 |
+
@app.route('/transcribe', methods=['POST', 'GET'])
|
79 |
+
def _upload_audio():
|
80 |
try:
|
81 |
+
audio_file = request.files['audio']
|
82 |
+
filename = os.path.join("./", audio_file.filename)
|
83 |
+
audio_file.save(filename)
|
84 |
+
print("RECEIVED")
|
85 |
+
return jsonify({'message': transcribe(filename)})
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
+
print(e)
|
88 |
+
return jsonify({'message': "Error"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def run_app():
|
91 |
app.run(port=7777)
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
runner = threading.Thread(target=run_app)
|
95 |
+
runner.start()
|
crystal.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from utils import setup_device, check_api_usage, record_chat, load_chat, get_time
|
2 |
-
from SoundScribe.speakerID import find_user
|
3 |
from SoundScribe import speak, live_listen
|
4 |
from internet import get_weather_data
|
5 |
import threading
|
@@ -30,7 +30,7 @@ AUTOMATION_COMAND = "Home Automation"
|
|
30 |
weather = None
|
31 |
|
32 |
device = setup_device()
|
33 |
-
print("INITIALIZING CRYSTAL -
|
34 |
"Acceleration" if str(device) != "cpu" else "")
|
35 |
|
36 |
|
@@ -51,7 +51,6 @@ def understand_surroundings():
|
|
51 |
while True:
|
52 |
current_events = answer_question(
|
53 |
"Describe your surroundings", "./database/current_frame.jpg")
|
54 |
-
|
55 |
time.sleep(10)
|
56 |
|
57 |
|
@@ -134,7 +133,8 @@ visual_processing.start()
|
|
134 |
|
135 |
while True:
|
136 |
full_history = load_chat()
|
137 |
-
username = find_user("recording.wav")
|
|
|
138 |
with open("database/notes.txt", "r") as notes:
|
139 |
notes = notes.read()
|
140 |
input_text = f"Time- {get_time()}\nWeather- {weather}\nSurroundings- {current_events}"+(f"\nNotes- {notes}" if notes else "")
|
@@ -171,6 +171,7 @@ while True:
|
|
171 |
relevant_history = f"{relevant_history}\n{username}: " + \
|
172 |
"\n" + input_text + "\nCRYSTAL: "
|
173 |
response = str(perceptrix(relevant_history))
|
|
|
174 |
with open("./database/input.txt", 'w') as clearfile:
|
175 |
clearfile.write("")
|
176 |
|
|
|
1 |
from utils import setup_device, check_api_usage, record_chat, load_chat, get_time
|
2 |
+
# from SoundScribe.speakerID import find_user
|
3 |
from SoundScribe import speak, live_listen
|
4 |
from internet import get_weather_data
|
5 |
import threading
|
|
|
30 |
weather = None
|
31 |
|
32 |
device = setup_device()
|
33 |
+
print("INITIALIZING CRYSTAL - DETECTED DEVICE:", str(device).upper(),
|
34 |
"Acceleration" if str(device) != "cpu" else "")
|
35 |
|
36 |
|
|
|
51 |
while True:
|
52 |
current_events = answer_question(
|
53 |
"Describe your surroundings", "./database/current_frame.jpg")
|
|
|
54 |
time.sleep(10)
|
55 |
|
56 |
|
|
|
133 |
|
134 |
while True:
|
135 |
full_history = load_chat()
|
136 |
+
# username = find_user("recording.wav")
|
137 |
+
username = "Vatsal"
|
138 |
with open("database/notes.txt", "r") as notes:
|
139 |
notes = notes.read()
|
140 |
input_text = f"Time- {get_time()}\nWeather- {weather}\nSurroundings- {current_events}"+(f"\nNotes- {notes}" if notes else "")
|
|
|
171 |
relevant_history = f"{relevant_history}\n{username}: " + \
|
172 |
"\n" + input_text + "\nCRYSTAL: "
|
173 |
response = str(perceptrix(relevant_history))
|
174 |
+
response = "<###CRYSTAL-INTERNAL###> Speech\n"+response
|
175 |
with open("./database/input.txt", 'w') as clearfile:
|
176 |
clearfile.write("")
|
177 |
|
database/current_frame.jpg
CHANGED
database/input.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
Hello. Can you hear me?
|
database/notes.txt
ADDED
File without changes
|
database/recording.wav
CHANGED
Binary files a/database/recording.wav and b/database/recording.wav differ
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
absl-py
|
2 |
accelerate
|
3 |
addict
|
@@ -109,7 +110,6 @@ gql
|
|
109 |
graphql-core
|
110 |
greenlet
|
111 |
grpcio
|
112 |
-
gTTS
|
113 |
gunicorn
|
114 |
h11
|
115 |
h2
|
|
|
1 |
+
git+https://github.com/coqui-ai/TTS
|
2 |
absl-py
|
3 |
accelerate
|
4 |
addict
|
|
|
110 |
graphql-core
|
111 |
greenlet
|
112 |
grpcio
|
|
|
113 |
gunicorn
|
114 |
h11
|
115 |
h2
|
utils.py
CHANGED
@@ -58,6 +58,11 @@ def check_api_usage():
|
|
58 |
"\t2. Use On-Device Calculations\n"
|
59 |
"Enter your choice (1/2): ")
|
60 |
USE_CLOUD_API = choice == "1"
|
|
|
|
|
|
|
|
|
|
|
61 |
else:
|
62 |
print("CRYSTAL Cloud API not reachable.")
|
63 |
else:
|
@@ -68,7 +73,7 @@ def check_api_usage():
|
|
68 |
|
69 |
|
70 |
def perceptrix(prompt):
|
71 |
-
url = API_URL+"perceptrix
|
72 |
|
73 |
payload = {'prompt': prompt}
|
74 |
headers = {'Content-Type': 'application/json'}
|
@@ -78,7 +83,7 @@ def perceptrix(prompt):
|
|
78 |
|
79 |
|
80 |
def robotix(prompt):
|
81 |
-
url = API_URL+"robotix
|
82 |
|
83 |
payload = {'prompt': prompt}
|
84 |
headers = {'Content-Type': 'application/json'}
|
@@ -88,7 +93,7 @@ def robotix(prompt):
|
|
88 |
|
89 |
|
90 |
def identify_objects_from_text(prompt):
|
91 |
-
url = API_URL+"identify_objects_from_text
|
92 |
|
93 |
payload = {'prompt': prompt}
|
94 |
headers = {'Content-Type': 'application/json'}
|
@@ -98,7 +103,7 @@ def identify_objects_from_text(prompt):
|
|
98 |
|
99 |
|
100 |
def search_keyword(prompt):
|
101 |
-
url = API_URL+"search_keyword
|
102 |
|
103 |
payload = {'prompt': prompt}
|
104 |
headers = {'Content-Type': 'application/json'}
|
@@ -108,7 +113,10 @@ def search_keyword(prompt):
|
|
108 |
|
109 |
|
110 |
def answer_question(prompt, frame):
|
111 |
-
url = API_URL+"vqa
|
|
|
|
|
|
|
112 |
_, image_data = cv2.imencode('.jpg', frame)
|
113 |
image = image_data.tolist()
|
114 |
|
@@ -121,7 +129,9 @@ def answer_question(prompt, frame):
|
|
121 |
|
122 |
|
123 |
def find_object_description(prompt, frame):
|
124 |
-
url = API_URL+"object_description
|
|
|
|
|
125 |
_, image_data = cv2.imencode('.jpg', frame)
|
126 |
image = image_data.tolist()
|
127 |
|
@@ -134,7 +144,9 @@ def find_object_description(prompt, frame):
|
|
134 |
|
135 |
|
136 |
def locate_object(prompt, frame):
|
137 |
-
url = API_URL+"locate_object
|
|
|
|
|
138 |
_, image_data = cv2.imencode('.jpg', frame)
|
139 |
image = image_data.tolist()
|
140 |
|
|
|
58 |
"\t2. Use On-Device Calculations\n"
|
59 |
"Enter your choice (1/2): ")
|
60 |
USE_CLOUD_API = choice == "1"
|
61 |
+
if USE_CLOUD_API:
|
62 |
+
print("RUNNING ON CLOUD")
|
63 |
+
else:
|
64 |
+
print("RUNNING LOCALLY")
|
65 |
+
|
66 |
else:
|
67 |
print("CRYSTAL Cloud API not reachable.")
|
68 |
else:
|
|
|
73 |
|
74 |
|
75 |
def perceptrix(prompt):
|
76 |
+
url = API_URL+"perceptrix"
|
77 |
|
78 |
payload = {'prompt': prompt}
|
79 |
headers = {'Content-Type': 'application/json'}
|
|
|
83 |
|
84 |
|
85 |
def robotix(prompt):
|
86 |
+
url = API_URL+"robotix"
|
87 |
|
88 |
payload = {'prompt': prompt}
|
89 |
headers = {'Content-Type': 'application/json'}
|
|
|
93 |
|
94 |
|
95 |
def identify_objects_from_text(prompt):
|
96 |
+
url = API_URL+"identify_objects_from_text"
|
97 |
|
98 |
payload = {'prompt': prompt}
|
99 |
headers = {'Content-Type': 'application/json'}
|
|
|
103 |
|
104 |
|
105 |
def search_keyword(prompt):
|
106 |
+
url = API_URL+"search_keyword"
|
107 |
|
108 |
payload = {'prompt': prompt}
|
109 |
headers = {'Content-Type': 'application/json'}
|
|
|
113 |
|
114 |
|
115 |
def answer_question(prompt, frame):
|
116 |
+
url = API_URL+"vqa"
|
117 |
+
if type(frame) == str:
|
118 |
+
frame = cv2.imread(frame)
|
119 |
+
|
120 |
_, image_data = cv2.imencode('.jpg', frame)
|
121 |
image = image_data.tolist()
|
122 |
|
|
|
129 |
|
130 |
|
131 |
def find_object_description(prompt, frame):
|
132 |
+
url = API_URL+"object_description"
|
133 |
+
if type(frame) == str:
|
134 |
+
frame = cv2.imread(frame)
|
135 |
_, image_data = cv2.imencode('.jpg', frame)
|
136 |
image = image_data.tolist()
|
137 |
|
|
|
144 |
|
145 |
|
146 |
def locate_object(prompt, frame):
|
147 |
+
url = API_URL+"locate_object"
|
148 |
+
if type(frame) == str:
|
149 |
+
frame = cv2.imread(frame)
|
150 |
_, image_data = cv2.imencode('.jpg', frame)
|
151 |
image = image_data.tolist()
|
152 |
|