# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright (c) 2020, SeanNaren. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # To convert mp3 files to wav using sox, you must have installed sox with mp3 support # For example sudo apt-get install libsox-fmt-mp3 import argparse import csv import json import logging import multiprocessing import os import subprocess import sys import tarfile from multiprocessing.pool import ThreadPool from pathlib import Path from typing import List import sox from sox import Transformer from tqdm import tqdm parser = argparse.ArgumentParser(description='Downloads and processes Mozilla Common Voice dataset.') parser.add_argument("--data_root", default='CommonVoice_dataset/', type=str, help="Directory to store the dataset.") parser.add_argument('--manifest_dir', default='./', type=str, help='Output directory for manifests') parser.add_argument("--num_workers", default=multiprocessing.cpu_count(), type=int, help="Workers to process dataset.") parser.add_argument('--sample_rate', default=16000, type=int, help='Sample rate') parser.add_argument('--n_channels', default=1, type=int, help='Number of channels for output wav files') parser.add_argument("--log", dest="log", action="store_true", default=False) parser.add_argument("--cleanup", dest="cleanup", action="store_true", default=False) parser.add_argument( '--files_to_process', nargs='+', default=['test.tsv', 'dev.tsv', 'train.tsv'], type=str, help='list of *.csv file names to process', ) parser.add_argument( '--version', default='cv-corpus-5.1-2020-06-22', type=str, help='Version of the dataset (obtainable via https://commonvoice.mozilla.org/en/datasets', ) parser.add_argument( '--language', default='en', type=str, help='Which language to download.(default english,' 'check https://commonvoice.mozilla.org/en/datasets for more language codes', ) args = parser.parse_args() COMMON_VOICE_URL = ( f"https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/" "{}/{}.tar.gz".format(args.version, args.language) ) def create_manifest(data: List[tuple], output_name: str, manifest_path: str): output_file = Path(manifest_path) / output_name output_file.parent.mkdir(exist_ok=True, parents=True) with output_file.open(mode='w') as f: for wav_path, duration, text in tqdm(data, total=len(data)): if wav_path != '': # skip invalid input files that could not be converted f.write( json.dumps({'audio_filepath': os.path.abspath(wav_path), "duration": duration, 'text': text}) + '\n' ) def process_files(csv_file, data_root, num_workers): """ Read *.csv file description, convert mp3 to wav, process text. Save results to data_root. Args: csv_file: str, path to *.csv file with data description, usually start from 'cv-' data_root: str, path to dir to save results; wav/ dir will be created """ wav_dir = os.path.join(data_root, 'wav/') os.makedirs(wav_dir, exist_ok=True) audio_clips_path = os.path.dirname(csv_file) + '/clips/' def process(x): file_path, text = x file_name = os.path.splitext(os.path.basename(file_path))[0] text = text.lower().strip() audio_path = os.path.join(audio_clips_path, file_path) if os.path.getsize(audio_path) == 0: logging.warning(f'Skipping empty audio file {audio_path}') return '', '', '' output_wav_path = os.path.join(wav_dir, file_name + '.wav') if not os.path.exists(output_wav_path): tfm = Transformer() tfm.rate(samplerate=args.sample_rate) tfm.channels(n_channels=args.n_channels) tfm.build(input_filepath=audio_path, output_filepath=output_wav_path) duration = sox.file_info.duration(output_wav_path) return output_wav_path, duration, text logging.info('Converting mp3 to wav for {}.'.format(csv_file)) with open(csv_file) as csvfile: reader = csv.DictReader(csvfile, delimiter='\t') next(reader, None) # skip the headers data = [] for row in reader: file_name = row['path'] # add the mp3 extension if the tsv entry does not have it if not file_name.endswith('.mp3'): file_name += '.mp3' data.append((file_name, row['sentence'])) with ThreadPool(num_workers) as pool: data = list(tqdm(pool.imap(process, data), total=len(data))) return data def main(): if args.log: logging.basicConfig(level=logging.INFO) data_root = args.data_root os.makedirs(data_root, exist_ok=True) target_unpacked_dir = os.path.join(data_root, "CV_unpacked") if os.path.exists(target_unpacked_dir): logging.info('Find existing folder {}'.format(target_unpacked_dir)) else: logging.info("Could not find Common Voice, Downloading corpus...") # some dataset versions are packaged in different named files, so forcing output_archive_filename = args.language + '.tar.gz' output_archive_filename = os.path.join(data_root, output_archive_filename) commands = [ 'wget', '--user-agent', '"Mozilla/5.0 (Windows NT 10.0; WOW64) ' 'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36"', '-O', output_archive_filename, f'{COMMON_VOICE_URL}', ] commands = " ".join(commands) subprocess.run(commands, shell=True, stderr=sys.stderr, stdout=sys.stdout, capture_output=False) filename = f"{args.language}.tar.gz" target_file = os.path.join(data_root, os.path.basename(filename)) os.makedirs(target_unpacked_dir, exist_ok=True) logging.info("Unpacking corpus to {} ...".format(target_unpacked_dir)) tar = tarfile.open(target_file) tar.extractall(target_unpacked_dir) tar.close() if args.cleanup: logging.info("removing tar archive to save space") os.remove(target_file) folder_path = os.path.join(target_unpacked_dir, args.version + f'/{args.language}/') if not os.path.isdir(folder_path): # try without language folder_path = os.path.join(target_unpacked_dir, args.version) if not os.path.isdir(folder_path): # try without version folder_path = target_unpacked_dir if not os.path.isdir(folder_path): logging.error(f'unable to locate unpacked files in {folder_path}') sys.exit() for csv_file in args.files_to_process: data = process_files( csv_file=os.path.join(folder_path, csv_file), data_root=os.path.join(data_root, os.path.splitext(csv_file)[0]), num_workers=args.num_workers, ) logging.info('Creating manifests...') create_manifest( data=data, output_name=f'commonvoice_{os.path.splitext(csv_file)[0]}_manifest.json', manifest_path=args.manifest_dir, ) if __name__ == "__main__": main()