# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re import string from collections import Counter from rouge_score import rouge_scorer """ This script can be used to calcualte exact match and F1 scores for many different tasks. The file "squad_test_predictions.jsonl" is assumed to be generated by the `examples/nlp/language_modeling/tuning/megatron_gpt_peft_eval.py` script Example command for GPT Preds ``` python peft_metric_calc.py \ --pred_file squad_test_predictions.jsonl \ --label_field "original_answers" \ ``` """ def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def main(): parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument( '--pred_file', type=str, help="Text file with test set prompts + model predictions. Prediction file can be made by running NeMo/examples/nlp/language_modeling/megatron_gpt_prompt_learning_eval.py", ) parser.add_argument( '--pred_field', type=str, help="The field in the json file that contains the prediction tokens", default="pred", ) parser.add_argument( '--label_field', type=str, help="The field in the json file that contains the ground truth tokens", default="label", ) args = parser.parse_args() pred_file = args.pred_file scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True) preds = open(pred_file, encoding="utf-8").readlines() f1 = exact_match = total = r_score = 0 for i in range(len(preds)): pred_line = json.loads(preds[i]) pred_answer = pred_line[args.pred_field] true_answers = pred_line[args.label_field] if not isinstance(true_answers, list): true_answers = [true_answers] r_scores = [] for ta in true_answers: r_scores.append(scorer.score(ta, pred_answer)['rougeL'].fmeasure) r_score += max(r_scores) exact_match += metric_max_over_ground_truths(exact_match_score, pred_answer, true_answers) f1 += metric_max_over_ground_truths(f1_score, pred_answer, true_answers) total += 1 exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total r_score = 100 * (r_score / total) res = {'exact_match': exact_match, 'f1': f1, "rougeL": r_score, 'total': total} print('\t'.join([f"{k} {v:.3f}" for k, v in res.items()])) if __name__ == "__main__": main()