# Copyright 2022 MosaicML LLM Foundry authors # SPDX-License-Identifier: Apache-2.0 import logging import os import warnings from typing import Any, Dict, List, Optional, Tuple, Union import torch from composer import algorithms from composer.callbacks import (EarlyStopper, Generate, LRMonitor, MemoryMonitor, OptimizerMonitor, RuntimeEstimator, SpeedMonitor) from composer.core import Algorithm, Callback, Evaluator from composer.datasets.in_context_learning_evaluation import \ get_icl_task_dataloader from composer.loggers import (InMemoryLogger, LoggerDestination, MLFlowLogger, TensorboardLogger, WandBLogger) from composer.optim import DecoupledAdamW from composer.optim.scheduler import (ComposerScheduler, ConstantWithWarmupScheduler, CosineAnnealingWithWarmupScheduler, LinearWithWarmupScheduler) from composer.utils import dist from omegaconf import DictConfig, ListConfig from omegaconf import OmegaConf as om from torch.optim.optimizer import Optimizer from transformers import AutoTokenizer, PreTrainedTokenizerBase from llmfoundry.callbacks import (EvalGauntlet, FDiffMetrics, GlobalLRScaling, HuggingFaceCheckpointer, LayerFreezing, MonolithicCheckpointSaver, ScheduledGarbageCollector) from llmfoundry.optim import (DecoupledAdaLRLion, DecoupledClipLion, DecoupledLionW, DecoupledLionW_8bit) from llmfoundry.optim.scheduler import InverseSquareRootWithWarmupScheduler from llmfoundry.tokenizers.tiktoken import TiktokenTokenizerWrapper log = logging.getLogger(__name__) def build_icl_data_and_gauntlet( icl_tasks_config: Union[str, ListConfig], eval_gauntlet_config: Optional[Union[str, DictConfig]], tokenizer: PreTrainedTokenizerBase, device_eval_batch_size: int, icl_seq_len: int, icl_subset_num_batches: Optional[int] = None ) -> Tuple[List[Evaluator], List[str], Optional[EvalGauntlet]]: icl_evaluators, logger_keys = build_icl_evaluators( icl_tasks_config, tokenizer, icl_seq_len, device_eval_batch_size, icl_subset_num_batches=icl_subset_num_batches) eval_gauntlet_cb = None if eval_gauntlet_config is not None: if isinstance(eval_gauntlet_config, str): with open(eval_gauntlet_config, 'r') as icl_f: eval_gauntlet_cfg = om.load(icl_f) eval_gauntlet = eval_gauntlet_cfg.eval_gauntlet elif isinstance(eval_gauntlet_config, DictConfig): # pyright: ignore eval_gauntlet = eval_gauntlet_config else: raise ValueError( f'Got invalid type for eval_gauntlet_config: {type(eval_gauntlet_config)}' ) eval_gauntlet.logger_keys = logger_keys eval_gauntlet.benchmark_sizes = { e.label: e.dataloader.num_samples for e in icl_evaluators } eval_gauntlet_cb = EvalGauntlet(**eval_gauntlet) return icl_evaluators, logger_keys, eval_gauntlet_cb def build_callback(name: str, kwargs: Dict[str, Any]) -> Callback: if name == 'lr_monitor': return LRMonitor() elif name == 'memory_monitor': return MemoryMonitor() elif name == 'speed_monitor': return SpeedMonitor(window_size=kwargs.get('window_size', 1), gpu_flops_available=kwargs.get( 'gpu_flops_available', None)) elif name == 'fdiff': return FDiffMetrics(**kwargs) elif name == 'runtime_estimator': return RuntimeEstimator() elif name == 'optimizer_monitor': return OptimizerMonitor(log_optimizer_metrics=kwargs.get( 'log_optimizer_metrics', True),) elif name == 'generate_callback': prompts = kwargs.pop('prompts') interval = kwargs.pop('interval', None) # Generate callback used to be batch_log_interval, so this is for backwards compatibility if interval is None: batch_log_interval: str = kwargs.pop('batch_log_interval', '') if batch_log_interval: interval = f'{batch_log_interval}ba' warnings.warn( ('generate_callback.batch_log_interval is deprecated and will be removed in a future release.' f'Please use interval: {interval}'), DeprecationWarning, ) else: raise KeyError( '"interval" must be specified with generate callback') return Generate(prompts=list(prompts), interval=interval, **kwargs) elif name == 'global_lr_scaling': return GlobalLRScaling(**kwargs) elif name == 'layer_freezing': return LayerFreezing(**kwargs) elif name == 'mono_ckpt_saver': return MonolithicCheckpointSaver(**kwargs) elif name == 'scheduled_gc': return ScheduledGarbageCollector(**kwargs) elif name == 'early_stopper': return EarlyStopper(**kwargs) elif name == 'hf_checkpointer': return HuggingFaceCheckpointer(**kwargs) else: raise ValueError(f'Not sure how to build callback: {name}') def build_logger(name: str, kwargs: Dict[str, Any]) -> LoggerDestination: if name == 'wandb': return WandBLogger(**kwargs) elif name == 'tensorboard': return TensorboardLogger(**kwargs) elif name == 'in_memory_logger': return InMemoryLogger(**kwargs) elif name == 'mlflow': return MLFlowLogger(**kwargs) elif name == 'inmemory': return InMemoryLogger(**kwargs) else: raise ValueError(f'Not sure how to build logger: {name}') def build_algorithm(name: str, kwargs: Dict[str, Any]) -> Algorithm: if name == 'gradient_clipping': return algorithms.GradientClipping(**kwargs) elif name == 'alibi': return algorithms.Alibi(**kwargs) elif name == 'fused_layernorm': return algorithms.FusedLayerNorm(**kwargs) elif name == 'gated_linear_units': return algorithms.GatedLinearUnits(**kwargs) elif name == 'low_precision_layernorm': return algorithms.LowPrecisionLayerNorm(**kwargs) else: raise ValueError(f'Not sure how to build algorithm: {name}') def build_optimizer(model: torch.nn.Module, name: str, optimizer_config: Dict[str, Any]) -> Optimizer: if name == 'decoupled_adamw': return DecoupledAdamW(model.parameters(), **optimizer_config) elif name == 'decoupled_lionw': return DecoupledLionW(model.parameters(), **optimizer_config) elif name == 'clip_lion': return DecoupledClipLion(model.parameters(), **optimizer_config) elif name == 'adalr_lion': return DecoupledAdaLRLion(model.parameters(), **optimizer_config) elif name == 'decoupled_lionw_8b': return DecoupledLionW_8bit(model.parameters(), **optimizer_config) else: raise ValueError(f'Not sure how to build optimizer: {name}') def build_scheduler(name: str, scheduler_config: Dict[str, Any]) -> ComposerScheduler: if name == 'constant_with_warmup': return ConstantWithWarmupScheduler(**scheduler_config) elif name == 'cosine_with_warmup': return CosineAnnealingWithWarmupScheduler(**scheduler_config) elif name == 'inv_sqrt_with_warmup': return InverseSquareRootWithWarmupScheduler(**scheduler_config) elif name == 'linear_decay_with_warmup': return LinearWithWarmupScheduler(**scheduler_config) else: raise ValueError(f'Not sure how to build scheduler: {name}') def build_tokenizer( tokenizer_name: str, tokenizer_kwargs: Dict[str, Any]) -> PreTrainedTokenizerBase: os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = '1' os.environ['TOKENIZERS_PARALLELISM'] = 'false' if tokenizer_name.startswith('tiktoken'): tokenizer = TiktokenTokenizerWrapper(**tokenizer_kwargs) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **tokenizer_kwargs) # HuggingFace does not respect the model_max_length kwarg, and overrides it with # min(kwargs['model_max_length'], original_config['model_max_length']), so we # explicitly set it here tokenizer.model_max_length = tokenizer_kwargs.get( 'model_max_length', int(1e30), ) return tokenizer def build_icl_evaluators( icl_tasks: Union[str, ListConfig], tokenizer: PreTrainedTokenizerBase, default_max_seq_len: int, default_batch_size: int, destination_dir: Optional[str] = None, icl_subset_num_batches: Optional[int] = None, ) -> Tuple[List[Evaluator], List[str]]: if destination_dir is None: destination_dir = os.getcwd() evaluators = [] logger_keys = [] icl_tasks_list = None if isinstance(icl_tasks, str): log.info(f'Extracting ICL task config from path: {icl_tasks}') with open(icl_tasks, 'r') as icl_f: icl_task_cfg = om.load(icl_f) icl_tasks_list = icl_task_cfg.icl_tasks else: icl_tasks_list = icl_tasks def _validate_cfg(icl_cfg: DictConfig): assert 'label' in icl_cfg assert 'dataset_uri' in icl_cfg and icl_cfg.dataset_uri is not None assert 'icl_task_type' in icl_cfg assert 'num_fewshot' in icl_cfg if 'metric_names' not in icl_cfg: if icl_cfg.icl_task_type == 'language_modeling': icl_cfg.metric_names = ['InContextLearningLMAccuracy'] elif icl_cfg.icl_task_type == 'multiple_choice': icl_cfg.metric_names = [ 'InContextLearningMultipleChoiceAccuracy' ] elif icl_cfg.icl_task_type == 'schema': icl_cfg.metric_names = [ 'InContextLearningMultipleChoiceAccuracy' ] elif icl_cfg.icl_task_type == 'question_answering': icl_cfg.metric_names = ['InContextLearningQAAccuracy'] elif icl_cfg.icl_task_type == 'code_evaluation': icl_cfg.metric_names = ['InContextLearningCodeEvalAccuracy'] else: raise ValueError( f'No metric_names defined, unable to build default metrics for icl_task_type={icl_cfg.icl_task_type}.' ) if 'prompt_string' not in icl_cfg: icl_cfg.prompt_string = '' if 'example_delimiter' not in icl_cfg: icl_cfg.example_delimiter = '\n' if 'continuation_delimiter' not in icl_cfg: icl_cfg.continuation_delimiter = ' ' if 'max_seq_len' not in icl_cfg: icl_cfg.max_seq_len = default_max_seq_len if 'batch_size' not in icl_cfg: icl_cfg.batch_size = default_batch_size if 'pass_at_k' not in icl_cfg: icl_cfg.pass_at_k = 1 if 'num_beams' not in icl_cfg: icl_cfg.num_beams = 20 for icl_cfg in icl_tasks_list: assert isinstance(icl_cfg, DictConfig) _validate_cfg(icl_cfg) for num_fewshot in list(icl_cfg.num_fewshot): if tokenizer.pad_token_id is None: # Current workaround to support GPT2 tokenizer with `pad_token_id = None` pad_tok_id = tokenizer.eos_token_id else: pad_tok_id = tokenizer.pad_token_id label = f'{icl_cfg.label}/{num_fewshot}-shot' metric_names = list(icl_cfg.metric_names) # TODO: fix Composer bug when copying local paths and destination exists destination_path = f'{destination_dir}/{icl_cfg.label}-{num_fewshot}.jsonl' if dist.get_local_rank() == 0 and os.path.exists(destination_path): os.remove(destination_path) dist.barrier() dataloaders = get_icl_task_dataloader( icl_cfg.icl_task_type, icl_cfg.dataset_uri, tokenizer, batch_size=icl_cfg.batch_size, max_seq_len=icl_cfg.max_seq_len, pad_tok_id=pad_tok_id, num_fewshot=num_fewshot, prompt_string=icl_cfg.prompt_string, example_delimiter=icl_cfg.example_delimiter, continuation_delimiter=icl_cfg.continuation_delimiter, destination_path=destination_path, pass_at_k=icl_cfg.pass_at_k, generations_per_sample=icl_cfg.num_beams, has_categories=icl_cfg.get('has_categories', False), ) if hasattr( icl_cfg, 'has_categories') and icl_cfg.has_categories and isinstance( dataloaders, dict): for category in dataloaders.keys(): logger_keys.extend([ f'metrics/{label}/{category}/{m}' for m in metric_names ]) evaluators.append( Evaluator(label=f'{label}/{category}', dataloader=dataloaders[category], metric_names=metric_names),) else: logger_keys.extend( [f'metrics/{label}/{m}' for m in metric_names]) evaluators.append( Evaluator(label=label, dataloader=dataloaders, metric_names=metric_names, subset_num_batches=icl_subset_num_batches)) return evaluators, logger_keys