Training complete
Browse files
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/electra-base-discriminator
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: electra-base-discriminator-finetuned-ner-cadec
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# electra-base-discriminator-finetuned-ner-cadec
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4364
|
24 |
+
- Precision: 0.3437
|
25 |
+
- Recall: 0.2772
|
26 |
+
- F1: 0.3068
|
27 |
+
- Accuracy: 0.8714
|
28 |
+
- Adr Precision: 0.2406
|
29 |
+
- Adr Recall: 0.2220
|
30 |
+
- Adr F1: 0.2309
|
31 |
+
- Disease Precision: 0.0
|
32 |
+
- Disease Recall: 0.0
|
33 |
+
- Disease F1: 0.0
|
34 |
+
- Drug Precision: 0.7063
|
35 |
+
- Drug Recall: 0.6121
|
36 |
+
- Drug F1: 0.6558
|
37 |
+
- Finding Precision: 0.0
|
38 |
+
- Finding Recall: 0.0
|
39 |
+
- Finding F1: 0.0
|
40 |
+
- Symptom Precision: 0.0
|
41 |
+
- Symptom Recall: 0.0
|
42 |
+
- Symptom F1: 0.0
|
43 |
+
- B-adr Precision: 0.5426
|
44 |
+
- B-adr Recall: 0.3666
|
45 |
+
- B-adr F1: 0.4376
|
46 |
+
- B-disease Precision: 0.0
|
47 |
+
- B-disease Recall: 0.0
|
48 |
+
- B-disease F1: 0.0
|
49 |
+
- B-drug Precision: 0.9375
|
50 |
+
- B-drug Recall: 0.6364
|
51 |
+
- B-drug F1: 0.7581
|
52 |
+
- B-finding Precision: 0.0
|
53 |
+
- B-finding Recall: 0.0
|
54 |
+
- B-finding F1: 0.0
|
55 |
+
- B-symptom Precision: 0.0
|
56 |
+
- B-symptom Recall: 0.0
|
57 |
+
- B-symptom F1: 0.0
|
58 |
+
- I-adr Precision: 0.1906
|
59 |
+
- I-adr Recall: 0.1738
|
60 |
+
- I-adr F1: 0.1818
|
61 |
+
- I-disease Precision: 0.0
|
62 |
+
- I-disease Recall: 0.0
|
63 |
+
- I-disease F1: 0.0
|
64 |
+
- I-drug Precision: 0.7343
|
65 |
+
- I-drug Recall: 0.6442
|
66 |
+
- I-drug F1: 0.6863
|
67 |
+
- I-finding Precision: 0.0
|
68 |
+
- I-finding Recall: 0.0
|
69 |
+
- I-finding F1: 0.0
|
70 |
+
- I-symptom Precision: 0.0
|
71 |
+
- I-symptom Recall: 0.0
|
72 |
+
- I-symptom F1: 0.0
|
73 |
+
- Macro Avg F1: 0.2064
|
74 |
+
- Weighted Avg F1: 0.3770
|
75 |
+
|
76 |
+
## Model description
|
77 |
+
|
78 |
+
More information needed
|
79 |
+
|
80 |
+
## Intended uses & limitations
|
81 |
+
|
82 |
+
More information needed
|
83 |
+
|
84 |
+
## Training and evaluation data
|
85 |
+
|
86 |
+
More information needed
|
87 |
+
|
88 |
+
## Training procedure
|
89 |
+
|
90 |
+
### Training hyperparameters
|
91 |
+
|
92 |
+
The following hyperparameters were used during training:
|
93 |
+
- learning_rate: 2e-05
|
94 |
+
- train_batch_size: 8
|
95 |
+
- eval_batch_size: 8
|
96 |
+
- seed: 42
|
97 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
98 |
+
- lr_scheduler_type: linear
|
99 |
+
- num_epochs: 10
|
100 |
+
|
101 |
+
### Training results
|
102 |
+
|
103 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
|
104 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
|
105 |
+
| No log | 1.0 | 127 | 0.8387 | 0.0 | 0.0 | 0.0 | 0.7902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
106 |
+
| No log | 2.0 | 254 | 0.8358 | 0.0 | 0.0 | 0.0 | 0.7902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
107 |
+
| No log | 3.0 | 381 | 0.7415 | 0.0782 | 0.0512 | 0.0619 | 0.7906 | 0.0782 | 0.0752 | 0.0767 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0172 | 0.0203 | 0.0186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0057 |
|
108 |
+
| 0.8638 | 4.0 | 508 | 0.6493 | 0.1417 | 0.0637 | 0.0879 | 0.8160 | 0.1417 | 0.0936 | 0.1127 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0253 | 0.0203 | 0.0225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0069 |
|
109 |
+
| 0.8638 | 5.0 | 635 | 0.5528 | 0.3498 | 0.2122 | 0.2642 | 0.8489 | 0.2037 | 0.1431 | 0.1681 | 0.0 | 0.0 | 0.0 | 0.8932 | 0.5576 | 0.6866 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5104 | 0.0940 | 0.1588 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.4121 | 0.5738 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0760 | 0.0587 | 0.0662 | 0.0 | 0.0 | 0.0 | 0.68 | 0.4172 | 0.5171 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1316 | 0.2012 |
|
110 |
+
| 0.8638 | 6.0 | 762 | 0.4846 | 0.2864 | 0.2310 | 0.2557 | 0.8587 | 0.1698 | 0.1670 | 0.1684 | 0.0 | 0.0 | 0.0 | 0.8545 | 0.5697 | 0.6836 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5070 | 0.2764 | 0.3578 | 0.0 | 0.0 | 0.0 | 0.9604 | 0.5879 | 0.7293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1170 | 0.1151 | 0.1160 | 0.0 | 0.0 | 0.0 | 0.8818 | 0.5951 | 0.7106 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1914 | 0.3276 |
|
111 |
+
| 0.8638 | 7.0 | 889 | 0.4610 | 0.3376 | 0.2622 | 0.2952 | 0.8679 | 0.2253 | 0.2092 | 0.2169 | 0.0 | 0.0 | 0.0 | 0.8276 | 0.5818 | 0.6833 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5228 | 0.2860 | 0.3697 | 0.0 | 0.0 | 0.0 | 0.9519 | 0.6 | 0.7361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1734 | 0.1648 | 0.1690 | 0.0 | 0.0 | 0.0 | 0.8696 | 0.6135 | 0.7194 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1994 | 0.3498 |
|
112 |
+
| 0.5419 | 8.0 | 1016 | 0.4499 | 0.2983 | 0.2697 | 0.2833 | 0.8656 | 0.1976 | 0.2128 | 0.2049 | 0.0 | 0.0 | 0.0 | 0.7299 | 0.6061 | 0.6623 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4803 | 0.3743 | 0.4207 | 0.0 | 0.0 | 0.0 | 0.9369 | 0.6303 | 0.7536 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1738 | 0.1828 | 0.1782 | 0.0 | 0.0 | 0.0 | 0.7518 | 0.6319 | 0.6867 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2039 | 0.3693 |
|
113 |
+
| 0.5419 | 9.0 | 1143 | 0.4511 | 0.3544 | 0.2734 | 0.3087 | 0.8700 | 0.2418 | 0.2165 | 0.2285 | 0.0 | 0.0 | 0.0 | 0.7769 | 0.6121 | 0.6847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5203 | 0.3436 | 0.4139 | 0.0 | 0.0 | 0.0 | 0.9211 | 0.6364 | 0.7527 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2041 | 0.1783 | 0.1904 | 0.0 | 0.0 | 0.0 | 0.7907 | 0.6258 | 0.6986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2056 | 0.3718 |
|
114 |
+
| 0.5419 | 10.0 | 1270 | 0.4364 | 0.3437 | 0.2772 | 0.3068 | 0.8714 | 0.2406 | 0.2220 | 0.2309 | 0.0 | 0.0 | 0.0 | 0.7063 | 0.6121 | 0.6558 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5426 | 0.3666 | 0.4376 | 0.0 | 0.0 | 0.0 | 0.9375 | 0.6364 | 0.7581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1906 | 0.1738 | 0.1818 | 0.0 | 0.0 | 0.0 | 0.7343 | 0.6442 | 0.6863 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2064 | 0.3770 |
|
115 |
+
|
116 |
+
|
117 |
+
### Framework versions
|
118 |
+
|
119 |
+
- Transformers 4.35.2
|
120 |
+
- Pytorch 2.1.0+cu118
|
121 |
+
- Datasets 2.15.0
|
122 |
+
- Tokenizers 0.15.0
|