csNoHug commited on
Commit
648d1ba
1 Parent(s): e9b4e22

Training complete

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/electra-base-discriminator
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: electra-base-discriminator-finetuned-ner-cadec
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # electra-base-discriminator-finetuned-ner-cadec
20
+
21
+ This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4364
24
+ - Precision: 0.3437
25
+ - Recall: 0.2772
26
+ - F1: 0.3068
27
+ - Accuracy: 0.8714
28
+ - Adr Precision: 0.2406
29
+ - Adr Recall: 0.2220
30
+ - Adr F1: 0.2309
31
+ - Disease Precision: 0.0
32
+ - Disease Recall: 0.0
33
+ - Disease F1: 0.0
34
+ - Drug Precision: 0.7063
35
+ - Drug Recall: 0.6121
36
+ - Drug F1: 0.6558
37
+ - Finding Precision: 0.0
38
+ - Finding Recall: 0.0
39
+ - Finding F1: 0.0
40
+ - Symptom Precision: 0.0
41
+ - Symptom Recall: 0.0
42
+ - Symptom F1: 0.0
43
+ - B-adr Precision: 0.5426
44
+ - B-adr Recall: 0.3666
45
+ - B-adr F1: 0.4376
46
+ - B-disease Precision: 0.0
47
+ - B-disease Recall: 0.0
48
+ - B-disease F1: 0.0
49
+ - B-drug Precision: 0.9375
50
+ - B-drug Recall: 0.6364
51
+ - B-drug F1: 0.7581
52
+ - B-finding Precision: 0.0
53
+ - B-finding Recall: 0.0
54
+ - B-finding F1: 0.0
55
+ - B-symptom Precision: 0.0
56
+ - B-symptom Recall: 0.0
57
+ - B-symptom F1: 0.0
58
+ - I-adr Precision: 0.1906
59
+ - I-adr Recall: 0.1738
60
+ - I-adr F1: 0.1818
61
+ - I-disease Precision: 0.0
62
+ - I-disease Recall: 0.0
63
+ - I-disease F1: 0.0
64
+ - I-drug Precision: 0.7343
65
+ - I-drug Recall: 0.6442
66
+ - I-drug F1: 0.6863
67
+ - I-finding Precision: 0.0
68
+ - I-finding Recall: 0.0
69
+ - I-finding F1: 0.0
70
+ - I-symptom Precision: 0.0
71
+ - I-symptom Recall: 0.0
72
+ - I-symptom F1: 0.0
73
+ - Macro Avg F1: 0.2064
74
+ - Weighted Avg F1: 0.3770
75
+
76
+ ## Model description
77
+
78
+ More information needed
79
+
80
+ ## Intended uses & limitations
81
+
82
+ More information needed
83
+
84
+ ## Training and evaluation data
85
+
86
+ More information needed
87
+
88
+ ## Training procedure
89
+
90
+ ### Training hyperparameters
91
+
92
+ The following hyperparameters were used during training:
93
+ - learning_rate: 2e-05
94
+ - train_batch_size: 8
95
+ - eval_batch_size: 8
96
+ - seed: 42
97
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
98
+ - lr_scheduler_type: linear
99
+ - num_epochs: 10
100
+
101
+ ### Training results
102
+
103
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 |
104
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:|
105
+ | No log | 1.0 | 127 | 0.8387 | 0.0 | 0.0 | 0.0 | 0.7902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
106
+ | No log | 2.0 | 254 | 0.8358 | 0.0 | 0.0 | 0.0 | 0.7902 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
107
+ | No log | 3.0 | 381 | 0.7415 | 0.0782 | 0.0512 | 0.0619 | 0.7906 | 0.0782 | 0.0752 | 0.0767 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0172 | 0.0203 | 0.0186 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0019 | 0.0057 |
108
+ | 0.8638 | 4.0 | 508 | 0.6493 | 0.1417 | 0.0637 | 0.0879 | 0.8160 | 0.1417 | 0.0936 | 0.1127 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0253 | 0.0203 | 0.0225 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0023 | 0.0069 |
109
+ | 0.8638 | 5.0 | 635 | 0.5528 | 0.3498 | 0.2122 | 0.2642 | 0.8489 | 0.2037 | 0.1431 | 0.1681 | 0.0 | 0.0 | 0.0 | 0.8932 | 0.5576 | 0.6866 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5104 | 0.0940 | 0.1588 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.4121 | 0.5738 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0760 | 0.0587 | 0.0662 | 0.0 | 0.0 | 0.0 | 0.68 | 0.4172 | 0.5171 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1316 | 0.2012 |
110
+ | 0.8638 | 6.0 | 762 | 0.4846 | 0.2864 | 0.2310 | 0.2557 | 0.8587 | 0.1698 | 0.1670 | 0.1684 | 0.0 | 0.0 | 0.0 | 0.8545 | 0.5697 | 0.6836 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5070 | 0.2764 | 0.3578 | 0.0 | 0.0 | 0.0 | 0.9604 | 0.5879 | 0.7293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1170 | 0.1151 | 0.1160 | 0.0 | 0.0 | 0.0 | 0.8818 | 0.5951 | 0.7106 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1914 | 0.3276 |
111
+ | 0.8638 | 7.0 | 889 | 0.4610 | 0.3376 | 0.2622 | 0.2952 | 0.8679 | 0.2253 | 0.2092 | 0.2169 | 0.0 | 0.0 | 0.0 | 0.8276 | 0.5818 | 0.6833 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5228 | 0.2860 | 0.3697 | 0.0 | 0.0 | 0.0 | 0.9519 | 0.6 | 0.7361 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1734 | 0.1648 | 0.1690 | 0.0 | 0.0 | 0.0 | 0.8696 | 0.6135 | 0.7194 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1994 | 0.3498 |
112
+ | 0.5419 | 8.0 | 1016 | 0.4499 | 0.2983 | 0.2697 | 0.2833 | 0.8656 | 0.1976 | 0.2128 | 0.2049 | 0.0 | 0.0 | 0.0 | 0.7299 | 0.6061 | 0.6623 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4803 | 0.3743 | 0.4207 | 0.0 | 0.0 | 0.0 | 0.9369 | 0.6303 | 0.7536 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1738 | 0.1828 | 0.1782 | 0.0 | 0.0 | 0.0 | 0.7518 | 0.6319 | 0.6867 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2039 | 0.3693 |
113
+ | 0.5419 | 9.0 | 1143 | 0.4511 | 0.3544 | 0.2734 | 0.3087 | 0.8700 | 0.2418 | 0.2165 | 0.2285 | 0.0 | 0.0 | 0.0 | 0.7769 | 0.6121 | 0.6847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5203 | 0.3436 | 0.4139 | 0.0 | 0.0 | 0.0 | 0.9211 | 0.6364 | 0.7527 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2041 | 0.1783 | 0.1904 | 0.0 | 0.0 | 0.0 | 0.7907 | 0.6258 | 0.6986 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2056 | 0.3718 |
114
+ | 0.5419 | 10.0 | 1270 | 0.4364 | 0.3437 | 0.2772 | 0.3068 | 0.8714 | 0.2406 | 0.2220 | 0.2309 | 0.0 | 0.0 | 0.0 | 0.7063 | 0.6121 | 0.6558 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5426 | 0.3666 | 0.4376 | 0.0 | 0.0 | 0.0 | 0.9375 | 0.6364 | 0.7581 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1906 | 0.1738 | 0.1818 | 0.0 | 0.0 | 0.0 | 0.7343 | 0.6442 | 0.6863 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2064 | 0.3770 |
115
+
116
+
117
+ ### Framework versions
118
+
119
+ - Transformers 4.35.2
120
+ - Pytorch 2.1.0+cu118
121
+ - Datasets 2.15.0
122
+ - Tokenizers 0.15.0