File size: 1,958 Bytes
3cb00e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-bem-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-bem-colab

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1638
- Wer: 0.3223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.2095        | 1.03  | 200  | 0.2066          | 0.3850 |
| 0.4028        | 2.06  | 400  | 0.1861          | 0.3539 |
| 0.3751        | 3.09  | 600  | 0.1781          | 0.3417 |
| 0.3631        | 4.12  | 800  | 0.1739          | 0.3392 |
| 0.3481        | 5.15  | 1000 | 0.1688          | 0.3340 |
| 0.3391        | 6.19  | 1200 | 0.1690          | 0.3319 |
| 0.3301        | 7.22  | 1400 | 0.1654          | 0.3285 |
| 0.3237        | 8.25  | 1600 | 0.1667          | 0.3262 |
| 0.3186        | 9.28  | 1800 | 0.1638          | 0.3223 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3