File size: 12,772 Bytes
5426788
 
 
c34ead6
 
 
 
 
 
 
5426788
088ea6e
 
5426788
 
 
b6ca566
 
5426788
 
 
abdf980
 
 
 
 
b6ca566
5426788
 
b24676d
5426788
 
abdf980
 
5426788
 
 
 
b24676d
 
 
 
 
 
 
 
 
5426788
 
 
 
 
 
 
b24676d
 
5426788
 
088ea6e
5426788
 
57b9778
5426788
 
 
 
 
 
 
 
 
57b9778
5426788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ca566
 
 
 
 
 
b24676d
b6ca566
5426788
 
 
 
 
 
b6ca566
5426788
 
 
 
b6ca566
 
b24676d
 
5426788
b6ca566
 
 
b24676d
5426788
 
 
 
b6ca566
 
 
5426788
57b9778
b24676d
57b9778
5426788
 
abdf980
b6ca566
 
 
 
 
abdf980
b6ca566
 
5426788
57b9778
b24676d
57b9778
 
 
5426788
abdf980
 
b6ca566
abdf980
5426788
 
b24676d
 
94e8d23
 
 
 
 
b6ca566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b24676d
b6ca566
 
 
 
 
9c62f4c
b6ca566
9c62f4c
b6ca566
9c62f4c
b6ca566
 
 
 
 
 
 
b24676d
 
 
9c62f4c
 
 
b24676d
b6ca566
b24676d
 
 
 
b6ca566
b24676d
94e8d23
 
 
 
 
b6ca566
 
 
b24676d
57b9778
 
 
 
5426788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78dd83b
5426788
 
 
 
9c62f4c
5426788
9c62f4c
5426788
9c62f4c
5426788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b24676d
5426788
 
 
 
 
 
 
 
 
57b9778
 
 
 
 
5426788
 
 
b24676d
 
5426788
 
57b9778
 
5426788
 
b24676d
 
 
 
 
 
 
5426788
 
 
b24676d
5426788
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
"""
Geneformer tokenizer.

Input data:
Required format: raw counts scRNAseq data without feature selection as .loom file
Required row (gene) attribute: "ensembl_id"; Ensembl ID for each gene
Required col (cell) attribute: "n_counts"; total read counts in that cell
Optional col (cell) attribute: "filter_pass"; binary indicator of whether cell should be tokenized based on user-defined filtering criteria
Optional col (cell) attributes: any other cell metadata can be passed on to the tokenized dataset as a custom attribute dictionary as shown below

Usage:
  from geneformer import TranscriptomeTokenizer
  tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ_major"}, nproc=4)
  tk.tokenize_data("loom_data_directory", "output_directory", "output_prefix")
"""

from __future__ import annotations
from typing import Literal
import pickle
from pathlib import Path

import logging

import warnings
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")

import anndata as ad
import loompy as lp
import numpy as np
import scipy.sparse as sp
from datasets import Dataset

logger = logging.getLogger(__name__)

GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl"
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary.pkl"


def rank_genes(gene_vector, gene_tokens):
    """
    Rank gene expression vector.
    """
    # sort by median-scaled gene values
    sorted_indices = np.argsort(-gene_vector)
    return gene_tokens[sorted_indices]


def tokenize_cell(gene_vector, gene_tokens):
    """
    Convert normalized gene expression vector to tokenized rank value encoding.
    """
    # create array of gene vector with token indices
    # mask undetected genes
    nonzero_mask = np.nonzero(gene_vector)[0]
    # rank by median-scaled gene values
    return rank_genes(gene_vector[nonzero_mask], gene_tokens[nonzero_mask])


class TranscriptomeTokenizer:
    def __init__(
        self,
        custom_attr_name_dict=None,
        nproc=1,
        gene_median_file=GENE_MEDIAN_FILE,
        token_dictionary_file=TOKEN_DICTIONARY_FILE,
    ):
        """
        Initialize tokenizer.

        Parameters
        ----------
        custom_attr_name_dict : None, dict
            Dictionary of custom attributes to be added to the dataset.
            Keys are the names of the attributes in the loom file.
            Values are the names of the attributes in the dataset.
        nproc : int
            Number of processes to use for dataset mapping.
        gene_median_file : Path
            Path to pickle file containing dictionary of non-zero median
            gene expression values across Genecorpus-30M.
        token_dictionary_file : Path
            Path to pickle file containing token dictionary (Ensembl IDs:token).
        """
        # dictionary of custom attributes {output dataset column name: input .loom column name}
        self.custom_attr_name_dict = custom_attr_name_dict

        # number of processes for dataset mapping
        self.nproc = nproc

        # load dictionary of gene normalization factors
        # (non-zero median value of expression across Genecorpus-30M)
        with open(gene_median_file, "rb") as f:
            self.gene_median_dict = pickle.load(f)

        # load token dictionary (Ensembl IDs:token)
        with open(token_dictionary_file, "rb") as f:
            self.gene_token_dict = pickle.load(f)

        # gene keys for full vocabulary
        self.gene_keys = list(self.gene_median_dict.keys())

        # protein-coding and miRNA gene list dictionary for selecting .loom rows for tokenization
        self.genelist_dict = dict(zip(self.gene_keys, [True] * len(self.gene_keys)))

    def tokenize_data(
        self,
        data_directory: Path | str,
        output_directory: Path | str,
        output_prefix: str,
        file_format: Literal["loom", "h5ad"] = "loom",
        use_generator: bool = False,
    ):
        """
        Tokenize .loom files in loom_data_directory and save as tokenized .dataset in output_directory.

        Parameters
        ----------
        loom_data_directory : Path
            Path to directory containing loom files or anndata files
        output_directory : Path
            Path to directory where tokenized data will be saved as .dataset
        output_prefix : str
            Prefix for output .dataset
        file_format : str
            Format of input files. Can be "loom" or "h5ad".
        use_generator : bool
            Whether to use generator or dict for tokenization.
        """
        tokenized_cells, cell_metadata = self.tokenize_files(
            Path(data_directory), file_format
        )
        tokenized_dataset = self.create_dataset(tokenized_cells, cell_metadata, use_generator=use_generator)

        output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
        tokenized_dataset.save_to_disk(output_path)

    def tokenize_files(
        self, data_directory, file_format: Literal["loom", "h5ad"] = "loom"
    ):
        tokenized_cells = []
        if self.custom_attr_name_dict is not None:
            cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
            cell_metadata = {attr_key: [] for attr_key in self.custom_attr_name_dict.values()}

        # loops through directories to tokenize .loom files
        file_found = 0
        # loops through directories to tokenize .loom or .h5ad files
        tokenize_file_fn = (
            self.tokenize_file if file_format == "loom" else self.tokenize_anndata
        )
        for file_path in data_directory.glob("*.{}".format(file_format)):
            file_found = 1
            print(f"Tokenizing {file_path}")
            file_tokenized_cells, file_cell_metadata = tokenize_file_fn(file_path)
            tokenized_cells += file_tokenized_cells
            if self.custom_attr_name_dict is not None:
                for k in cell_attr:
                    cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[k]
            else:
                cell_metadata = None

        if file_found == 0:
            logger.error(
                f"No .{file_format} files found in directory {data_directory}.")
            raise
        return tokenized_cells, cell_metadata

    def tokenize_anndata(self, adata_file_path, target_sum=10_000, chunk_size=512):
        adata = ad.read(adata_file_path, backed="r")

        if self.custom_attr_name_dict is not None:
            file_cell_metadata = {
                attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
            }

        coding_miRNA_loc = np.where(
            [self.genelist_dict.get(i, False) for i in adata.var["ensembl_id"]]
        )[0]
        norm_factor_vector = np.array(
            [
                self.gene_median_dict[i]
                for i in adata.var["ensembl_id"][coding_miRNA_loc]
            ]
        )
        coding_miRNA_ids = adata.var["ensembl_id"][coding_miRNA_loc]
        coding_miRNA_tokens = np.array(
            [self.gene_token_dict[i] for i in coding_miRNA_ids]
        )

        try:
            _ = adata.obs["filter_pass"]
        except KeyError:
            var_exists = False
        else:
            var_exists = True

        if var_exists:
            filter_pass_loc = np.where(
                [i == 1 for i in adata.obs["filter_pass"]]
            )[0]
        elif not var_exists:
            print(
                f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
            )
            filter_pass_loc = np.array([i for i in range(adata.shape[0])])

        tokenized_cells = []

        for i in range(0, len(filter_pass_loc), chunk_size):
            idx = filter_pass_loc[i:i+chunk_size]

            X_view = adata[idx, coding_miRNA_loc].X
            n_counts = adata[idx].obs['n_counts'].values[:, None]
            X_norm = (X_view / n_counts * target_sum / norm_factor_vector)
            X_norm = sp.csr_matrix(X_norm)

            tokenized_cells += [
                rank_genes(X_norm[i].data, coding_miRNA_tokens[X_norm[i].indices])
                for i in range(X_norm.shape[0])
            ]

            # add custom attributes for subview to dict
            if self.custom_attr_name_dict is not None:
                for k in file_cell_metadata.keys():
                    file_cell_metadata[k] += adata[idx].obs[k].tolist()
            else:
                file_cell_metadata = None

        return tokenized_cells, file_cell_metadata

    def tokenize_file(self, loom_file_path, target_sum=10_000):
        if self.custom_attr_name_dict is not None:
            file_cell_metadata = {
                attr_key: [] for attr_key in self.custom_attr_name_dict.keys()
            }

        with lp.connect(str(loom_file_path)) as data:
            # define coordinates of detected protein-coding or miRNA genes and vector of their normalization factors
            coding_miRNA_loc = np.where(
                [self.genelist_dict.get(i, False) for i in data.ra["ensembl_id"]]
            )[0]
            norm_factor_vector = np.array(
                [
                    self.gene_median_dict[i]
                    for i in data.ra["ensembl_id"][coding_miRNA_loc]
                ]
            )
            coding_miRNA_ids = data.ra["ensembl_id"][coding_miRNA_loc]
            coding_miRNA_tokens = np.array(
                [self.gene_token_dict[i] for i in coding_miRNA_ids]
            )

            # define coordinates of cells passing filters for inclusion (e.g. QC)
            try:
                data.ca["filter_pass"]
            except AttributeError:
                var_exists = False
            else:
                var_exists = True

            if var_exists:
                filter_pass_loc = np.where(
                    [i == 1 for i in data.ca["filter_pass"]]
                )[0]
            elif not var_exists:
                print(
                    f"{loom_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
                )
                filter_pass_loc = np.array([i for i in range(data.shape[1])])

            # scan through .loom files and tokenize cells
            tokenized_cells = []
            for (_ix, _selection, view) in data.scan(items=filter_pass_loc, axis=1):
                # select subview with protein-coding and miRNA genes
                subview = view.view[coding_miRNA_loc, :]

                # normalize by total counts per cell and multiply by 10,000 to allocate bits to precision
                # and normalize by gene normalization factors
                subview_norm_array = (
                    subview[:, :]
                    / subview.ca.n_counts
                    * target_sum
                    / norm_factor_vector[:, None]
                )
                # tokenize subview gene vectors
                tokenized_cells += [
                    tokenize_cell(subview_norm_array[:, i], coding_miRNA_tokens)
                    for i in range(subview_norm_array.shape[1])
                ]

                # add custom attributes for subview to dict
                if self.custom_attr_name_dict is not None:
                    for k in file_cell_metadata.keys():
                        file_cell_metadata[k] += subview.ca[k].tolist()
                else:
                    file_cell_metadata = None

        return tokenized_cells, file_cell_metadata

    def create_dataset(self, tokenized_cells, cell_metadata, use_generator=False):
        print("Creating dataset...")
        # create dict for dataset creation
        dataset_dict = {"input_ids": tokenized_cells}
        if self.custom_attr_name_dict is not None:
            dataset_dict.update(cell_metadata)

        # create dataset
        if use_generator:
            def dict_generator():
                for i in range(len(tokenized_cells)):
                    yield {k: dataset_dict[k][i] for k in dataset_dict.keys()}
            output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc)
        else:
            output_dataset = Dataset.from_dict(dataset_dict)

        # truncate dataset
        def truncate(example):
            example["input_ids"] = example["input_ids"][:2048]
            return example

        output_dataset_truncated = output_dataset.map(truncate, num_proc=self.nproc)

        # measure lengths of dataset
        def measure_length(example):
            example["length"] = len(example["input_ids"])
            return example

        output_dataset_truncated_w_length = output_dataset_truncated.map(
            measure_length, num_proc=self.nproc
        )

        return output_dataset_truncated_w_length