File size: 17,776 Bytes
d154fee badcca6 d154fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""
Geneformer embedding extractor.
Usage:
from geneformer import EmbExtractor
embex = EmbExtractor(model_type="CellClassifier",
num_classes=3,
emb_mode="cell",
cell_emb_style="mean_pool",
filter_data={"cell_type":["cardiomyocyte"]},
max_ncells=1000,
max_ncells_to_plot=1000,
emb_layer=-1,
emb_label=["disease","cell_type"],
labels_to_plot=["disease","cell_type"],
forward_batch_size=100,
nproc=16)
embs = embex.extract_embs("path/to/model",
"path/to/input_data",
"path/to/output_directory",
"output_prefix")
embex.plot_embs(embs=embs,
plot_style="heatmap",
output_directory="path/to/output_directory",
output_prefix="output_prefix")
"""
# imports
import logging
import anndata
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pickle
import scanpy as sc
import seaborn as sns
import torch
from collections import Counter
from pathlib import Path
from tqdm.notebook import trange
from transformers import BertForMaskedLM, BertForTokenClassification, BertForSequenceClassification
from .tokenizer import TOKEN_DICTIONARY_FILE
from .in_silico_perturber import load_and_filter, \
downsample_and_sort, \
load_model, \
quant_layers, \
downsample_and_sort, \
pad_tensor_list, \
get_model_input_size
logger = logging.getLogger(__name__)
# get cell embeddings excluding padding
def mean_nonpadding_embs(embs, original_lens):
# mask based on padding lengths
mask = torch.arange(embs.size(1)).unsqueeze(0).to("cuda") < original_lens.unsqueeze(1)
# extend mask dimensions to match the embeddings tensor
mask = mask.unsqueeze(2).expand_as(embs)
# use the mask to zero out the embeddings in padded areas
masked_embs = embs * mask.float()
# sum and divide by the lengths to get the mean of non-padding embs
mean_embs = masked_embs.sum(1) / original_lens.view(-1, 1).float()
return mean_embs
# average embedding position of goal cell states
def get_embs(model,
filtered_input_data,
emb_mode,
layer_to_quant,
pad_token_id,
forward_batch_size):
model_input_size = get_model_input_size(model)
total_batch_length = len(filtered_input_data)
if ((total_batch_length-1)/forward_batch_size).is_integer():
forward_batch_size = forward_batch_size-1
embs_list = []
for i in trange(0, total_batch_length, forward_batch_size):
max_range = min(i+forward_batch_size, total_batch_length)
minibatch = filtered_input_data.select([i for i in range(i, max_range)])
max_len = max(minibatch["length"])
original_lens = torch.tensor(minibatch["length"]).to("cuda")
minibatch.set_format(type="torch")
input_data_minibatch = minibatch["input_ids"]
input_data_minibatch = pad_tensor_list(input_data_minibatch,
max_len,
pad_token_id,
model_input_size)
with torch.no_grad():
outputs = model(
input_ids = input_data_minibatch.to("cuda")
)
embs_i = outputs.hidden_states[layer_to_quant]
if emb_mode == "cell":
mean_embs = mean_nonpadding_embs(embs_i, original_lens)
embs_list += [mean_embs]
del outputs
del minibatch
del input_data_minibatch
del embs_i
del mean_embs
torch.cuda.empty_cache()
embs_stack = torch.cat(embs_list)
return embs_stack
def label_embs(embs, downsampled_data, emb_labels):
embs_df = pd.DataFrame(embs.cpu())
if emb_labels is not None:
for label in emb_labels:
emb_label = downsampled_data[label]
embs_df[label] = emb_label
return embs_df
def plot_umap(embs_df, emb_dims, label, output_file, kwargs_dict):
only_embs_df = embs_df.iloc[:,:emb_dims]
only_embs_df.index = pd.RangeIndex(0, only_embs_df.shape[0], name=None).astype(str)
only_embs_df.columns = pd.RangeIndex(0, only_embs_df.shape[1], name=None).astype(str)
vars_dict = {"embs": only_embs_df.columns}
obs_dict = {"cell_id": list(only_embs_df.index),
f"{label}": list(embs_df[label])}
adata = anndata.AnnData(X=only_embs_df, obs=obs_dict, var=vars_dict)
sc.tl.pca(adata, svd_solver='arpack')
sc.pp.neighbors(adata)
sc.tl.umap(adata)
sns.set(rc={'figure.figsize':(10,10)}, font_scale=2.3)
sns.set_style("white")
default_kwargs_dict = {"palette":"Set2", "size":200}
if kwargs_dict is not None:
default_kwargs_dict.update(kwargs_dict)
sc.pl.umap(adata, color=label, save=output_file, **default_kwargs_dict)
def gen_heatmap_class_colors(labels, df):
pal = sns.cubehelix_palette(len(Counter(labels).keys()), light=0.9, dark=0.1, hue=1, reverse=True, start=1, rot=-2)
lut = dict(zip(map(str, Counter(labels).keys()), pal))
colors = pd.Series(labels, index=df.index).map(lut)
return colors
def gen_heatmap_class_dict(classes, label_colors_series):
class_color_dict_df = pd.DataFrame({"classes": classes, "color": label_colors_series})
class_color_dict_df = class_color_dict_df.drop_duplicates(subset=["classes"])
return dict(zip(class_color_dict_df["classes"],class_color_dict_df["color"]))
def make_colorbar(embs_df, label):
labels = list(embs_df[label])
cell_type_colors = gen_heatmap_class_colors(labels, embs_df)
label_colors = pd.DataFrame(cell_type_colors, columns=[label])
for i,row in label_colors.iterrows():
colors=row[0]
if len(colors)!=3 or any(np.isnan(colors)):
print(i,colors)
label_colors.isna().sum()
# create dictionary for colors and classes
label_color_dict = gen_heatmap_class_dict(labels, label_colors[label])
return label_colors, label_color_dict
def plot_heatmap(embs_df, emb_dims, label, output_file, kwargs_dict):
sns.set_style("white")
sns.set(font_scale=2)
plt.figure(figsize=(15, 15), dpi=150)
label_colors, label_color_dict = make_colorbar(embs_df, label)
default_kwargs_dict = {"row_cluster": True,
"col_cluster": True,
"row_colors": label_colors,
"standard_scale": 1,
"linewidths": 0,
"xticklabels": False,
"yticklabels": False,
"figsize": (15,15),
"center": 0,
"cmap": "magma"}
if kwargs_dict is not None:
default_kwargs_dict.update(kwargs_dict)
g = sns.clustermap(embs_df.iloc[:,0:emb_dims].apply(pd.to_numeric), **default_kwargs_dict)
plt.setp(g.ax_row_colors.get_xmajorticklabels(), rotation=45, ha="right")
for label_color in list(label_color_dict.keys()):
g.ax_col_dendrogram.bar(0, 0, color=label_color_dict[label_color], label=label_color, linewidth=0)
l1 = g.ax_col_dendrogram.legend(title=f"{label}",
loc="lower center",
ncol=4,
bbox_to_anchor=(0.5, 1),
facecolor="white")
plt.savefig(output_file, bbox_inches='tight')
class EmbExtractor:
valid_option_dict = {
"model_type": {"Pretrained","GeneClassifier","CellClassifier"},
"num_classes": {int},
"emb_mode": {"cell","gene"},
"cell_emb_style": {"mean_pool"},
"filter_data": {None, dict},
"max_ncells": {None, int},
"emb_layer": {-1, 0},
"emb_label": {None, list},
"labels_to_plot": {None, list},
"forward_batch_size": {int},
"nproc": {int},
}
def __init__(
self,
model_type="Pretrained",
num_classes=0,
emb_mode="cell",
cell_emb_style="mean_pool",
filter_data=None,
max_ncells=1000,
emb_layer=-1,
emb_label=None,
labels_to_plot=None,
forward_batch_size=100,
nproc=4,
token_dictionary_file=TOKEN_DICTIONARY_FILE,
):
"""
Initialize embedding extractor.
Parameters
----------
model_type : {"Pretrained","GeneClassifier","CellClassifier"}
Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
num_classes : int
If model is a gene or cell classifier, specify number of classes it was trained to classify.
For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
emb_mode : {"cell","gene"}
Whether to output cell or gene embeddings.
cell_emb_style : "mean_pool"
Method for summarizing cell embeddings.
Currently only option is mean pooling of gene embeddings for given cell.
filter_data : None, dict
Default is to extract embeddings from all input data.
Otherwise, dictionary specifying .dataset column name and list of values to filter by.
max_ncells : None, int
Maximum number of cells to extract embeddings from.
Default is 1000 cells randomly sampled from input data.
If None, will extract embeddings from all cells.
emb_layer : {-1, 0}
Embedding layer to extract.
The last layer is most specifically weighted to optimize the given learning objective.
Generally, it is best to extract the 2nd to last layer to get a more general representation.
-1: 2nd to last layer
0: last layer
emb_label : None, list
List of column name(s) in .dataset to add as labels to embedding output.
labels_to_plot : None, list
Cell labels to plot.
Shown as color bar in heatmap.
Shown as cell color in umap.
Plotting umap requires labels to plot.
forward_batch_size : int
Batch size for forward pass.
nproc : int
Number of CPU processes to use.
token_dictionary_file : Path
Path to pickle file containing token dictionary (Ensembl ID:token).
"""
self.model_type = model_type
self.num_classes = num_classes
self.emb_mode = emb_mode
self.cell_emb_style = cell_emb_style
self.filter_data = filter_data
self.max_ncells = max_ncells
self.emb_layer = emb_layer
self.emb_label = emb_label
self.labels_to_plot = labels_to_plot
self.forward_batch_size = forward_batch_size
self.nproc = nproc
self.validate_options()
# load token dictionary (Ensembl IDs:token)
with open(token_dictionary_file, "rb") as f:
self.gene_token_dict = pickle.load(f)
self.pad_token_id = self.gene_token_dict.get("<pad>")
def validate_options(self):
# confirm arguments are within valid options and compatible with each other
for attr_name,valid_options in self.valid_option_dict.items():
attr_value = self.__dict__[attr_name]
if type(attr_value) not in {list, dict}:
if attr_value in valid_options:
continue
valid_type = False
for option in valid_options:
if (option in [int,list,dict]) and isinstance(attr_value, option):
valid_type = True
break
if valid_type:
continue
logger.error(
f"Invalid option for {attr_name}. " \
f"Valid options for {attr_name}: {valid_options}"
)
raise
if self.filter_data is not None:
for key,value in self.filter_data.items():
if type(value) != list:
self.filter_data[key] = [value]
logger.warning(
"Values in filter_data dict must be lists. " \
f"Changing {key} value to list ([{value}]).")
def extract_embs(self,
model_directory,
input_data_file,
output_directory,
output_prefix):
"""
Extract embeddings from input data and save as results in output_directory.
Parameters
----------
model_directory : Path
Path to directory containing model
input_data_file : Path
Path to directory containing .dataset inputs
output_directory : Path
Path to directory where embedding data will be saved as csv
output_prefix : str
Prefix for output file
"""
filtered_input_data = load_and_filter(self.filter_data, self.nproc, input_data_file)
downsampled_data = downsample_and_sort(filtered_input_data, self.max_ncells)
model = load_model(self.model_type, self.num_classes, model_directory)
layer_to_quant = quant_layers(model)+self.emb_layer
embs = get_embs(model,
downsampled_data,
self.emb_mode,
layer_to_quant,
self.pad_token_id,
self.forward_batch_size)
embs_df = label_embs(embs, downsampled_data, self.emb_label)
# save embeddings to output_path
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
embs_df.to_csv(output_path)
return embs_df
def plot_embs(self,
embs,
plot_style,
output_directory,
output_prefix,
max_ncells_to_plot=1000,
kwargs_dict=None):
"""
Plot embeddings, coloring by provided labels.
Parameters
----------
embs : pandas.core.frame.DataFrame
Pandas dataframe containing embeddings output from extract_embs
plot_style : str
Style of plot: "heatmap" or "umap"
output_directory : Path
Path to directory where plots will be saved as pdf
output_prefix : str
Prefix for output file
max_ncells_to_plot : None, int
Maximum number of cells to plot.
Default is 1000 cells randomly sampled from embeddings.
If None, will plot embeddings from all cells.
kwargs_dict : dict
Dictionary of kwargs to pass to plotting function.
"""
if plot_style not in ["heatmap","umap"]:
logger.error(
"Invalid option for 'plot_style'. " \
"Valid options: {'heatmap','umap'}"
)
raise
if (plot_style == "umap") and (self.labels_to_plot is None):
logger.error(
"Plotting UMAP requires 'labels_to_plot'. "
)
raise
if max_ncells_to_plot > self.max_ncells:
max_ncells_to_plot = self.max_ncells
logger.warning(
"max_ncells_to_plot must be <= max_ncells. " \
f"Changing max_ncells_to_plot to {self.max_ncells}.")
if (max_ncells_to_plot is not None) \
and (max_ncells_to_plot < self.max_ncells):
embs = embs.sample(max_ncells_to_plot, axis=0)
if self.emb_label is None:
label_len = 0
else:
label_len = len(self.emb_label)
emb_dims = embs.shape[1] - label_len
if self.emb_label is None:
emb_labels = None
else:
emb_labels = embs.columns[emb_dims:]
if plot_style == "umap":
for label in self.labels_to_plot:
if label not in emb_labels:
logger.warning(
f"Label {label} from labels_to_plot " \
f"not present in provided embeddings dataframe.")
continue
output_prefix_label = "_" + output_prefix + f"_umap_{label}"
output_file = (Path(output_directory) / output_prefix_label).with_suffix(".pdf")
plot_umap(embs, emb_dims, label, output_prefix_label, kwargs_dict)
if plot_style == "heatmap":
for label in self.labels_to_plot:
if label not in emb_labels:
logger.warning(
f"Label {label} from labels_to_plot " \
f"not present in provided embeddings dataframe.")
continue
output_prefix_label = output_prefix + f"_heatmap_{label}"
output_file = (Path(output_directory) / output_prefix_label).with_suffix(".pdf")
plot_heatmap(embs, emb_dims, label, output_file, kwargs_dict)
|