Upload model to Hugging Face
Browse files- BC-no-theta.zip +2 -2
- BC-no-theta/data +20 -20
- BC-no-theta/policy.optimizer.pth +1 -1
- BC-no-theta/policy.pth +1 -1
- config.json +1 -1
- results.json +1 -1
BC-no-theta.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e34290590ec82bf963139d27aa08cdd9f4641a02c85c27eebb362a1487e0b099
|
3 |
+
size 44149
|
BC-no-theta/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb75a2f1360>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb75a2f13f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb75a2f1480>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb75a2f1510>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb75a2f15a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb75a2f1630>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb75a2f16c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb75a2f1750>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb75a2f17e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb75a2f1870>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb75a2f1900>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb75a2f1990>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb75a2dde00>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 507904,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1681945403831295996,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EKva/I/muwkQqziMkIWaFdCAADIQgAAyEIRZLhCcvt8QgAAyEKRIfRCeYEuQKziMkIWaFdCAADIQgAAyEKktKlCcvt8QjBGYkIAACBCkSH0QkvE4j1y+3xCAADIQqziMkKa7CRCFmhXQn1Pc0IAAMhCAADIQpEh9EJCdR1AmuwkQhZoV0J9T3NCAADIQgAAyEJy+3xCAADIQqziMkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzXOpiMAD8CUhpRSlIwBbJRNLQGMAXSUR0CdFjFgDzRQdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ0fUQNCqp91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnSX/w3HaOHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdKLoYvWYndX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ0pYo1DSgJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnTBtdqtYCHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdNNcgQpWndX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ02OkzoEB91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnTaFDfFaS3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdOc6LOzIFdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ09lvHcUM51fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnT7i9EkSmXV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdP0mE4//vdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1DxCXyAhB1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnUe+zD4xlHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdSQ09hZyNdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1Ja/tY0VJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnU2jneSB9XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdawYZVGTcdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1sUmfGuLd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnWyaMWGh3HV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cdby8p1A7gdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1xxUR3/xV1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnXLQTmGM43V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdcyVJ+UhWdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ119l9Sde91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnXn33lCCz3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cde5iQ1aW5dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ18Ikka/AV1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnYCgTdtVJnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdhU1He7+UdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2HF1Oj7AN1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnYeUeuFHrnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cdip90zTF3dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2PT+VC5Vh1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnZFFG9YfXHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdkeiwSrYHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2XLfIjnmt1fZQoaAZoCWgPQwi/nNmu0OcOwJSGlFKUaBVNLQFoFkdAnZ0z9wWFe3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdnyLP2PDHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2foOMERrd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnaWoAbQ1JnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdqaF2FFlTdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2q15t3wCt1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnasmYjSofnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd0RINmUW3dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3XUF+uvEF1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAndmIFqzqr3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd2iX/5tWNdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3gPQ8fV7R1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAneSlpPAO8XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd5gaMJhOQdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3mbGVAzHl1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnerKL0jC53V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd8GMK1G9YdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3x5t3wCr91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnfJZPVNHpnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd97H9FWn1dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ39bRiPQv91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnf9/ZmI0qHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeABpRoAXEdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4GK5f+jud1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAngwYVEd/8XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeDhOMERradX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4O0a6z3RJ1fZQoaAZoCWgPQwi3Konsg+wOwJSGlFKUaBVNLQFoFkdAnhN1hG6PKnV9lChoBmgJaA9DCL+c2a7Q5w7AlIaUUpRoFU0tAWgWR0CeGACxu89PdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4ZzrIHTql1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnhog6hg3LnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeHa8vmHQAdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4io1ivxH51fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAniQhbSqlxnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeJLILw4KhdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5IHt2LYPJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnk17zTWoWHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeTyjCYTkAdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5PlTjvNNd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnlSro8p1BHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeV19n9NvgdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5YcaUA1el1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnli+MqBmPHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeW4Ue+23KdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5ezSy+pOx1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnl/rROUMX3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeYD+36Q/5dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5j12+wkgR1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnmhcRcu8LHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeajRQ79ycdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5qp0YCQtB1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnm8/rB0p3HV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CedFk+otL+dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ52bc6/7BR1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnncIsNDtxHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CefEH7xd6cdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ6A4hkiD/V1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnoKHndO6/nV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CegvnxaxHHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ6Hli3G4qh1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnozejynUD3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CejmVbiZOSdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 620,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
BC-no-theta/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 18973
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9183f4041ddcb5629585318bc1f29dc3475dc894c805a4534fd6c12315234b0
|
3 |
size 18973
|
BC-no-theta/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 9295
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eefeaaf440e8050057fc574c0f972870aa6f8ffd8fd05da0ff6cb9d420ce5d1
|
3 |
size 9295
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fa2f1360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fa2f13f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fa2f1480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fa2f1510>", "_build": "<function ActorCriticPolicy._build at 0x7f32fa2f15a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fa2f1630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f32fa2f16c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fa2f1750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fa2f17e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fa2f1870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fa2f1900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fa2f1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f32fa5df580>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681944654316928986, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAACRjzkJE3Ry//wmpQtOrHEIAAMhCAADIQsFA6UECARxCj0itQgAAyEJA2u1CDG2MP0c7vUKb06VCaEFcQgAAyEIAAMhCAADIQsDSqEKLp5dCZjG6QlVyGcAAAMhCn+a0QQAAyEIAAMhCZl1ZQgAAyEIAAMhCAADIQp2HvUIj0JA/AADIQgAAyEIAAMhCAADIQgAAyEIAAMhCi306Qvp1WkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE+6VeashWsCUhpRSlIwBbJRNLQGMAXSUR0B04S+rU9ZBdX2UKGgGaAloD0MIRl9BmrHwOUCUhpRSlGgVS1NoFkdAdOqPRArxzHV9lChoBmgJaA9DCCSZ1Tvc+j5AlIaUUpRoFUtPaBZHQHTtQtFrl/91fZQoaAZoCWgPQwjABkSIKydsQJSGlFKUaBVNLQFoFkdAdPBCeVcD83V9lChoBmgJaA9DCL5r0JfezjNAlIaUUpRoFU0oAWgWR0B099xDLKV6dX2UKGgGaAloD0MIfotOllqPScCUhpRSlGgVS2RoFkdAdQpfhddE9nV9lChoBmgJaA9DCD4g0JmUwIHAlIaUUpRoFUvHaBZHQHUQE2DQJHB1fZQoaAZoCWgPQwj2Kcdk8U12QJSGlFKUaBVNLQFoFkdAdSrcAiml7HV9lChoBmgJaA9DCFLWbyZmO3JAlIaUUpRoFU0tAWgWR0B1LpdcB2fTdX2UKGgGaAloD0MIxsIQOT2Re0CUhpRSlGgVTS0BaBZHQHVLxp5/smh1fZQoaAZoCWgPQwjCps6j4hlvQJSGlFKUaBVNLQFoFkdAdVDi3XqZ+nV9lChoBmgJaA9DCC0hH/RsamZAlIaUUpRoFUvhaBZHQHVeiowVTJh1fZQoaAZoCWgPQwh5XFSLiD9WQJSGlFKUaBVL+GgWR0B1zshq0tyxdX2UKGgGaAloD0MIEr9iDRfBL8CUhpRSlGgVS1hoFkdAddgnwG4ZuXV9lChoBmgJaA9DCEbvVMA9H1DAlIaUUpRoFUubaBZHQHXereQ+2Vp1fZQoaAZoCWgPQwgSMpBnF7BwwJSGlFKUaBVLYWgWR0B141FfAsTWdX2UKGgGaAloD0MIQSybOSQQUECUhpRSlGgVTS0BaBZHQHXmeN1hb4d1fZQoaAZoCWgPQwhsPUM4ZmdnQJSGlFKUaBVNLQFoFkdAdepddE9dNXV9lChoBmgJaA9DCOt0IOupX03AlIaUUpRoFUtdaBZHQHXyB0lqrR11fZQoaAZoCWgPQwiIY13cRiFEwJSGlFKUaBVLYmgWR0B19qj1wo9cdX2UKGgGaAloD0MIKv7viAqLUECUhpRSlGgVS0poFkdAdfa0pVjqfXV9lChoBmgJaA9DCOp1i8BYxydAlIaUUpRoFUuhaBZHQHX3FkMCtA91fZQoaAZoCWgPQwjoSgSqf3AgwJSGlFKUaBVLE2gWR0B1+d6Ww/xEdX2UKGgGaAloD0MIQdMSKwMcgMCUhpRSlGgVS2toFkdAdgM/HYHxBnV9lChoBmgJaA9DCA3jbhCttQjAlIaUUpRoFUt3aBZHQHYJyCz1K5F1fZQoaAZoCWgPQwjh7xezJQVDQJSGlFKUaBVL2WgWR0B2EeLwWnCPdX2UKGgGaAloD0MI2sU0070GIkCUhpRSlGgVS1VoFkdAdhJKqn3tbHV9lChoBmgJaA9DCE1LrIxGwWDAlIaUUpRoFU0tAWgWR0B2Hpgtvn8sdX2UKGgGaAloD0MI+uyA64rPVkCUhpRSlGgVS4loFkdAdiYrwOOKfnV9lChoBmgJaA9DCDCBW3fz7DhAlIaUUpRoFU0kAWgWR0B2JyFev6j4dX2UKGgGaAloD0MIHQWIghnjL0CUhpRSlGgVS11oFkdAditCEYfnwHV9lChoBmgJaA9DCDhm2ZPAJj3AlIaUUpRoFUsJaBZHQHYspIg/1QJ1fZQoaAZoCWgPQwhk6xnCEcaAwJSGlFKUaBVLymgWR0B2Lv4i5d4WdX2UKGgGaAloD0MIbywoDApjgcCUhpRSlGgVSz5oFkdAdi8a24NI9XV9lChoBmgJaA9DCHnpJjEI1mTAlIaUUpRoFUtpaBZHQHY2UDuBtk51fZQoaAZoCWgPQwiyvKseMFckwJSGlFKUaBVLVGgWR0B2Os2VE/jbdX2UKGgGaAloD0MIjxfS4aG2ZUCUhpRSlGgVS1xoFkdAdjyT/Q0GeXV9lChoBmgJaA9DCN6wbVFm4xFAlIaUUpRoFUsNaBZHQHY9OhkAggZ1fZQoaAZoCWgPQwgaFM0D2J+IwJSGlFKUaBVLeWgWR0B2Pdx0dRzjdX2UKGgGaAloD0MI5C7CFAXGjMCUhpRSlGgVS3RoFkdAdlIYO2AoX3V9lChoBmgJaA9DCB1znrFvPXjAlIaUUpRoFUvqaBZHQHZbV6NVBD51fZQoaAZoCWgPQwiASpUoeydjwJSGlFKUaBVL52gWR0B2YtBNVR1pdX2UKGgGaAloD0MIk/5eCo+SZkCUhpRSlGgVS6NoFkdAdmoVR1oxpXV9lChoBmgJaA9DCCR9WkX/F2pAlIaUUpRoFU0tAWgWR0B2bKQT238XdX2UKGgGaAloD0MIs9DOaRYwIkCUhpRSlGgVSw5oFkdAdm+oc7yQP3V9lChoBmgJaA9DCG6nrRHBJGNAlIaUUpRoFUtZaBZHQHZ9V+3H7xd1fZQoaAZoCWgPQwgO9buw1dKBQJSGlFKUaBVNLQFoFkdAdpQx//echHV9lChoBmgJaA9DCPD49q5BRyNAlIaUUpRoFUsPaBZHQHaXHrleWv91fZQoaAZoCWgPQwiXOPJAZAEwwJSGlFKUaBVNLQFoFkdAdpxdP+GXX3V9lChoBmgJaA9DCKYr2EY88SBAlIaUUpRoFUunaBZHQHaeMSwnpjd1fZQoaAZoCWgPQwhREaeT7NR9wJSGlFKUaBVLQWgWR0B2pxy/9Hc2dX2UKGgGaAloD0MISDZXzXP8aMCUhpRSlGgVTS0BaBZHQHannnyNGVl1fZQoaAZoCWgPQwgIO8WqwWKNwJSGlFKUaBVLgWgWR0B2qiLQ5WBCdX2UKGgGaAloD0MILbEyGnkNg8CUhpRSlGgVS3doFkdAdq04N7SiNHV9lChoBmgJaA9DCIdT5uYbjThAlIaUUpRoFUsPaBZHQHavtcB2fTV1fZQoaAZoCWgPQwgNxLKZw1p7wJSGlFKUaBVLP2gWR0B2sz3Dej20dX2UKGgGaAloD0MIrkhMUMNjPECUhpRSlGgVSxBoFkdAdrT+PzWf9XV9lChoBmgJaA9DCJ4JTRJLGGBAlIaUUpRoFUtbaBZHQHbAQ+2VmjF1fZQoaAZoCWgPQwhY42w6AkgtQJSGlFKUaBVL4WgWR0B2xIp5NXYEdX2UKGgGaAloD0MIY35uaMqLWECUhpRSlGgVS+9oFkdAdsfBLf1pTXV9lChoBmgJaA9DCJgwmpXtuUnAlIaUUpRoFUviaBZHQHbOfXCj1wp1fZQoaAZoCWgPQwh2qRH6mW4wQJSGlFKUaBVLDGgWR0B20KtEG7jDdX2UKGgGaAloD0MInu+nxkuAZcCUhpRSlGgVS/toFkdAdu/EyLyc1HV9lChoBmgJaA9DCPwYc9eSGXhAlIaUUpRoFU0tAWgWR0B29Bp22XsxdX2UKGgGaAloD0MILQlQU0tGcUCUhpRSlGgVTS0BaBZHQHb8wcPvrnl1fZQoaAZoCWgPQwhZvi7Df5JjQJSGlFKUaBVLFWgWR0B2/xVmz0HydX2UKGgGaAloD0MI2QqaltgZb0CUhpRSlGgVTS0BaBZHQHcDj5ftx+91fZQoaAZoCWgPQwidDfln5qmFwJSGlFKUaBVLPWgWR0B3cVmSQo1DdX2UKGgGaAloD0MIeVvptdlXZMCUhpRSlGgVTS0BaBZHQHeKUWqLjxV1fZQoaAZoCWgPQwhDOdGuAoiDQJSGlFKUaBVNLQFoFkdAd4yr433pOnV9lChoBmgJaA9DCNYcIJjDyoLAlIaUUpRoFUuxaBZHQHeNGcvugHx1fZQoaAZoCWgPQwgLmMCtu/lBQJSGlFKUaBVLEGgWR0B3jnVc2R7rdX2UKGgGaAloD0MIPZl/9E2WOcCUhpRSlGgVSw9oFkdAd47P6sQumXV9lChoBmgJaA9DCHu8kA4PsR9AlIaUUpRoFUvlaBZHQHePgljVhCt1fZQoaAZoCWgPQwj034PXrmxywJSGlFKUaBVLomgWR0B3o19c8kledX2UKGgGaAloD0MIkDLiAlAHf0CUhpRSlGgVTS0BaBZHQHezMkhRqGl1fZQoaAZoCWgPQwjxZ3izBoZ7wJSGlFKUaBVNCwFoFkdAd7RkCFK02XV9lChoBmgJaA9DCDAuVWkL0W5AlIaUUpRoFU0tAWgWR0B3vAYBNmDldX2UKGgGaAloD0MIpaKx9ncLUcCUhpRSlGgVTS0BaBZHQHfXlme18b91fZQoaAZoCWgPQwiUMqmhDUQ+QJSGlFKUaBVNLQFoFkdAd+lTRYzSC3V9lChoBmgJaA9DCLL2d7bH43JAlIaUUpRoFU0tAWgWR0B36qXyAhB7dX2UKGgGaAloD0MICyk/qXbqe0CUhpRSlGgVTS0BaBZHQHfx75dnkDJ1fZQoaAZoCWgPQwjJzAUuTzx4QJSGlFKUaBVNLQFoFkdAeBIVzZHuqnV9lChoBmgJaA9DCNzZVx6kqXvAlIaUUpRoFU0nAWgWR0B4HeP/7zkIdX2UKGgGaAloD0MIZjIcz2eQW0CUhpRSlGgVTS0BaBZHQHggM4o7V8V1fZQoaAZoCWgPQwiEKjV7oNNtQJSGlFKUaBVNLQFoFkdAeCdePq9oOHV9lChoBmgJaA9DCFZFuMkoE4RAlIaUUpRoFU0tAWgWR0B4QrMB6rvLdX2UKGgGaAloD0MIFqdaC7PwJMCUhpRSlGgVSxNoFkdAeEayC4Bmw3V9lChoBmgJaA9DCLYQ5KAEqHZAlIaUUpRoFU0tAWgWR0B4Ueb4Ju2rdX2UKGgGaAloD0MI2safqCxXc0CUhpRSlGgVTS0BaBZHQHhTuB+Wnj11fZQoaAZoCWgPQwjlCu9yUXt4QJSGlFKUaBVNLQFoFkdAeFn5D7ZWaXV9lChoBmgJaA9DCCOfVzx1A37AlIaUUpRoFUupaBZHQHhzSSNfgJl1fZQoaAZoCWgPQwjFc7aA0D5vQJSGlFKUaBVNLQFoFkdAeHWGFSKm9HV9lChoBmgJaA9DCOqVsgxxNn3AlIaUUpRoFUvtaBZHQHh2akZaV2R1fZQoaAZoCWgPQwi7fsFu2LdvwJSGlFKUaBVNJwFoFkdAeHu9QoCuEHV9lChoBmgJaA9DCMHEH0WdJW/AlIaUUpRoFUvpaBZHQHiTN4iX6ZZ1fZQoaAZoCWgPQwhq2sU0ExB/wJSGlFKUaBVL92gWR0B4mN/wy6+WdX2UKGgGaAloD0MIC0J5H6dIhcCUhpRSlGgVTSYBaBZHQHikZYkmhM91fZQoaAZoCWgPQwi4rS08L2UoQJSGlFKUaBVLEGgWR0B4p+RvFWGRdX2UKGgGaAloD0MI3nNgOaLXg0CUhpRSlGgVTS0BaBZHQHivr+98JD51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb75a2f1360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb75a2f13f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb75a2f1480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb75a2f1510>", "_build": "<function ActorCriticPolicy._build at 0x7fb75a2f15a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb75a2f1630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb75a2f16c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb75a2f1750>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb75a2f17e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb75a2f1870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb75a2f1900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb75a2f1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb75a2dde00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVswEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgKSwqFlIwBQ5R0lFKUjARoaWdolGgSKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaApLCoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCFLCoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681945403831295996, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAJEh9EKva/I/muwkQqziMkIWaFdCAADIQgAAyEIRZLhCcvt8QgAAyEKRIfRCeYEuQKziMkIWaFdCAADIQgAAyEKktKlCcvt8QjBGYkIAACBCkSH0QkvE4j1y+3xCAADIQqziMkKa7CRCFmhXQn1Pc0IAAMhCAADIQpEh9EJCdR1AmuwkQhZoV0J9T3NCAADIQgAAyEJy+3xCAADIQqziMkKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgzXOpiMAD8CUhpRSlIwBbJRNLQGMAXSUR0CdFjFgDzRQdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ0fUQNCqp91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnSX/w3HaOHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdKLoYvWYndX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ0pYo1DSgJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnTBtdqtYCHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdNNcgQpWndX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ02OkzoEB91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnTaFDfFaS3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdOc6LOzIFdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ09lvHcUM51fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnT7i9EkSmXV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdP0mE4//vdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1DxCXyAhB1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnUe+zD4xlHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdSQ09hZyNdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1Ja/tY0VJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnU2jneSB9XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdawYZVGTcdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1sUmfGuLd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnWyaMWGh3HV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cdby8p1A7gdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ1xxUR3/xV1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnXLQTmGM43V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdcyVJ+UhWdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ119l9Sde91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnXn33lCCz3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cde5iQ1aW5dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ18Ikka/AV1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnYCgTdtVJnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdhU1He7+UdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2HF1Oj7AN1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnYeUeuFHrnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cdip90zTF3dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2PT+VC5Vh1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnZFFG9YfXHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdkeiwSrYHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2XLfIjnmt1fZQoaAZoCWgPQwi/nNmu0OcOwJSGlFKUaBVNLQFoFkdAnZ0z9wWFe3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdnyLP2PDHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2foOMERrd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnaWoAbQ1JnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CdqaF2FFlTdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ2q15t3wCt1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnasmYjSofnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd0RINmUW3dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3XUF+uvEF1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAndmIFqzqr3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd2iX/5tWNdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3gPQ8fV7R1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAneSlpPAO8XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd5gaMJhOQdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3mbGVAzHl1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnerKL0jC53V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd8GMK1G9YdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ3x5t3wCr91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnfJZPVNHpnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0Cd97H9FWn1dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ39bRiPQv91fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnf9/ZmI0qHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeABpRoAXEdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4GK5f+jud1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAngwYVEd/8XV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeDhOMERradX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4O0a6z3RJ1fZQoaAZoCWgPQwi3Konsg+wOwJSGlFKUaBVNLQFoFkdAnhN1hG6PKnV9lChoBmgJaA9DCL+c2a7Q5w7AlIaUUpRoFU0tAWgWR0CeGACxu89PdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4ZzrIHTql1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnhog6hg3LnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeHa8vmHQAdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ4io1ivxH51fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAniQhbSqlxnV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeJLILw4KhdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5IHt2LYPJ1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnk17zTWoWHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeTyjCYTkAdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5PlTjvNNd1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnlSro8p1BHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeV19n9NvgdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5YcaUA1el1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnli+MqBmPHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeW4Ue+23KdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5ezSy+pOx1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnl/rROUMX3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeYD+36Q/5dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5j12+wkgR1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnmhcRcu8LHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CeajRQ79ycdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ5qp0YCQtB1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnm8/rB0p3HV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CedFk+otL+dX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ52bc6/7BR1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnncIsNDtxHV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CefEH7xd6cdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ6A4hkiD/V1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnoKHndO6/nV9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CegvnxaxHHdX2UKGgGaAloD0MIgzXOpiMAD8CUhpRSlGgVTS0BaBZHQJ6Hli3G4qh1fZQoaAZoCWgPQwiDNc6mIwAPwJSGlFKUaBVNLQFoFkdAnozejynUD3V9lChoBmgJaA9DCIM1zqYjAA/AlIaUUpRoFU0tAWgWR0CejmVbiZOSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-
|
|
|
1 |
+
{"mean_reward": -3.8750679450988676, "std_reward": 4.440892098500626e-16, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T16:36:23.965323"}
|