--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v2-ca-10awr results: [] --- # whisper-large-v2-ca-10awr This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the cymen-arfor/15awr train[:66%] main dataset. It achieves the following results on the evaluation set: - Loss: 1.0314 - Wer: 0.3836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.1503 | 4.7281 | 1000 | 0.6544 | 0.4245 | | 0.018 | 9.4563 | 2000 | 0.8409 | 0.3931 | | 0.0041 | 14.1844 | 3000 | 0.9081 | 0.3811 | | 0.0006 | 18.9125 | 4000 | 1.0021 | 0.3840 | | 0.0005 | 23.6407 | 5000 | 1.0314 | 0.3836 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1