File size: 2,309 Bytes
af713cc e3d724f af713cc e949415 e3d724f e5ebd9b e3d724f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: mit
tags:
- Machine Learning Interatomic Potential
---
# Model Card for mace-unversal
[MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
[2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories convering 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
# Citation
If you use the pretrained models in this repository, please cite all the following:
```
@inproceedings{Batatia2022mace,
title={{MACE}: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields},
author={Ilyes Batatia and David Peter Kovacs and Gregor N. C. Simm and Christoph Ortner and Gabor Csanyi},
booktitle={Advances in Neural Information Processing Systems},
editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
year={2022},
url={https://openreview.net/forum?id=YPpSngE-ZU}
}
@article{riebesell2023matbench,
title={Matbench Discovery--An evaluation framework for machine learning crystal stability prediction},
author={Riebesell, Janosh and Goodall, Rhys EA and Jain, Anubhav and Benner, Philipp and Persson, Kristin A and Lee, Alpha A},
journal={arXiv preprint arXiv:2308.14920},
year={2023}
}
@misc {yuan_chiang_2023,
author = { {Yuan Chiang} },
title = { mace-universal (Revision e5ebd9b) },
year = 2023,
url = { https://huggingface.co/cyrusyc/mace-universal },
doi = { 10.57967/hf/1202 },
publisher = { Hugging Face }
}
```
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
## Training Procedure |