cyrusyc commited on
Commit
deaf366
1 Parent(s): 52e8e3f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -2
README.md CHANGED
@@ -4,15 +4,41 @@ tags:
4
  - Machine Learning Interatomic Potential
5
  ---
6
 
7
- # Model Card for mace-unversal
8
 
9
  [MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
10
 
11
 
12
  [2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
13
 
 
14
 
15
- # Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  If you use the pretrained models in this repository, please cite all the following:
18
 
 
4
  - Machine Learning Interatomic Potential
5
  ---
6
 
7
+ # Model Card for mace-universal
8
 
9
  [MACE](https://github.com/ACEsuit/mace) (Multiple Atomic Cluster Expansion) is a machine learning interatomic potential (MLIP) with higher order equivariant message passing. For more information about MACE formalism, please see authors' [paper](https://arxiv.org/abs/2206.07697).
10
 
11
 
12
  [2023-08-14-mace-universal.model](https://huggingface.co/cyrusyc/mace-universal/blob/main/2023-08-14-mace-universal.model) was trained with MPTrj data, [Materials Project](https://materialsproject.org) relaxation trajectories compiled by [CHGNet](https://arxiv.org/abs/2302.14231) authors to cover 89 elements and 1.6M configurations. The checkpoint was used for materials stability prediction in [Matbench Discovery](https://matbench-discovery.materialsproject.org/) and the corresponding [preprint](https://arXiv.org/abs/2308.14920).
13
 
14
+ # Usage
15
 
16
+ 1. (optional) Install Pytorch, [ASE](https://wiki.fysik.dtu.dk/ase/) prerequisites for specific version
17
+ 2. Install [MACE](https://github.com/ACEsuit/mace) through GitHub (not through pypi)
18
+
19
+ ```shell
20
+ pip install git+https://github.com/ACEsuit/mace.git
21
+ ```
22
+ 3. Use MACECalculator
23
+
24
+ ```python
25
+ from mace.calculators import MACECalculator
26
+ from ase.md.npt import NPT
27
+
28
+ calculator = MACECalculator(
29
+ model_paths=/path/to/pretrained.model,
30
+ device=device
31
+ )
32
+
33
+ nvt = NPT(
34
+ atoms=atoms,
35
+ timestep=timestep,
36
+ temperature_K=temperature,
37
+ externalstress=externalstress,
38
+ )
39
+ ```
40
+
41
+ # Citing
42
 
43
  If you use the pretrained models in this repository, please cite all the following:
44