File size: 1,933 Bytes
2f176b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: philschmid/bart-large-cnn-samsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum-dc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-samsum-dc

This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7404
- Rouge1: 32.5028
- Rouge2: 13.6008
- Rougel: 23.6102
- Rougelsum: 25.0002

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.9176        | 1.0   | 2676  | 1.7297          | 31.7614 | 13.0816 | 22.9243 | 24.6866   |
| 1.4492        | 2.0   | 5352  | 1.5775          | 32.2161 | 13.4673 | 23.7824 | 25.0772   |
| 1.1499        | 3.0   | 8028  | 1.5778          | 33.1269 | 14.0686 | 24.2058 | 25.39     |
| 0.8947        | 4.0   | 10704 | 1.6344          | 32.9016 | 13.9786 | 24.1741 | 25.5371   |
| 0.6905        | 5.0   | 13380 | 1.7404          | 32.5028 | 13.6008 | 23.6102 | 25.0002   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2