dada22231 commited on
Commit
3590a9a
1 Parent(s): 35357d1

End of training

Browse files
Files changed (2) hide show
  1. README.md +170 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
22
+ bf16: auto
23
+ chat_template: llama3
24
+ cosine_min_lr_ratio: 0.1
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - d906a6ef03b48993_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ path: /workspace/input_data/d906a6ef03b48993_train_data.json
33
+ type:
34
+ field_instruction: question
35
+ field_output: answerKey
36
+ format: '{instruction}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ device_map: auto
43
+ do_eval: true
44
+ eval_batch_size: 1
45
+ eval_sample_packing: false
46
+ eval_steps: 25
47
+ evaluation_strategy: steps
48
+ flash_attention: false
49
+ fp16: null
50
+ fsdp: null
51
+ fsdp_config: null
52
+ gradient_accumulation_steps: 32
53
+ gradient_checkpointing: true
54
+ group_by_length: true
55
+ hub_model_id: dada22231/5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
56
+ hub_strategy: checkpoint
57
+ hub_token: null
58
+ hub_username: dada22231
59
+ learning_rate: 0.0001
60
+ load_in_4bit: false
61
+ load_in_8bit: false
62
+ local_rank: null
63
+ logging_steps: 1
64
+ lora_alpha: 64
65
+ lora_dropout: 0.05
66
+ lora_fan_in_fan_out: null
67
+ lora_model_dir: null
68
+ lora_r: 32
69
+ lora_target_linear: true
70
+ lora_target_modules:
71
+ - q_proj
72
+ - v_proj
73
+ lr_scheduler: cosine
74
+ max_grad_norm: 1.0
75
+ max_memory:
76
+ 0: 70GiB
77
+ 1: 70GiB
78
+ 2: 70GiB
79
+ 3: 70GiB
80
+ max_steps: 50
81
+ micro_batch_size: 1
82
+ mlflow_experiment_name: /tmp/d906a6ef03b48993_train_data.json
83
+ model_type: AutoModelForCausalLM
84
+ num_epochs: 3
85
+ optim_args:
86
+ adam_beta1: 0.9
87
+ adam_beta2: 0.95
88
+ adam_epsilon: 1e-5
89
+ optimizer: adamw_torch
90
+ output_dir: miner_id_24
91
+ pad_to_sequence_len: true
92
+ repository_id: dada22231/5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
93
+ resume_from_checkpoint: null
94
+ s2_attention: null
95
+ sample_packing: false
96
+ save_steps: 25
97
+ save_strategy: steps
98
+ sequence_len: 2048
99
+ strict: false
100
+ tf32: false
101
+ tokenizer_type: AutoTokenizer
102
+ torch_compile: false
103
+ train_on_inputs: false
104
+ trust_remote_code: true
105
+ val_set_size: 50
106
+ wandb_entity: null
107
+ wandb_mode: online
108
+ wandb_name: 5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
109
+ wandb_project: Public_TuningSN
110
+ wandb_runid: 5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
111
+ warmup_ratio: 0.04
112
+ weight_decay: 0.01
113
+ xformers_attention: null
114
+
115
+ ```
116
+
117
+ </details><br>
118
+
119
+ # 5e4faf5d-208d-4dd8-ac2f-dce1d9618c0c
120
+
121
+ This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset.
122
+ It achieves the following results on the evaluation set:
123
+ - Loss: nan
124
+
125
+ ## Model description
126
+
127
+ More information needed
128
+
129
+ ## Intended uses & limitations
130
+
131
+ More information needed
132
+
133
+ ## Training and evaluation data
134
+
135
+ More information needed
136
+
137
+ ## Training procedure
138
+
139
+ ### Training hyperparameters
140
+
141
+ The following hyperparameters were used during training:
142
+ - learning_rate: 0.0001
143
+ - train_batch_size: 1
144
+ - eval_batch_size: 1
145
+ - seed: 42
146
+ - distributed_type: multi-GPU
147
+ - num_devices: 4
148
+ - gradient_accumulation_steps: 32
149
+ - total_train_batch_size: 128
150
+ - total_eval_batch_size: 4
151
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
152
+ - lr_scheduler_type: cosine
153
+ - lr_scheduler_warmup_steps: 2
154
+ - training_steps: 42
155
+
156
+ ### Training results
157
+
158
+ | Training Loss | Epoch | Step | Validation Loss |
159
+ |:-------------:|:------:|:----:|:---------------:|
160
+ | 10.3715 | 0.0721 | 1 | nan |
161
+ | 10.2808 | 1.8311 | 25 | nan |
162
+
163
+
164
+ ### Framework versions
165
+
166
+ - PEFT 0.13.2
167
+ - Transformers 4.46.0
168
+ - Pytorch 2.5.0+cu124
169
+ - Datasets 3.0.1
170
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9921c5acee078ff1d1f66e82680010947751b5d69b5e8dc441d17b8a7eb3802
3
+ size 104322