arynkiewicz
commited on
Commit
•
efd9158
1
Parent(s):
5e31eb9
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: daisd-ai/anydef-orpo-v2
|
3 |
+
tags:
|
4 |
+
- entity linking
|
5 |
+
datasets:
|
6 |
+
- arynkiewicz/anydef-kilt-tasks-v2
|
7 |
+
model-index:
|
8 |
+
- name: daisd-ai/anydef-v2-linear-W4A16
|
9 |
+
results: []
|
10 |
+
license: apache-2.0
|
11 |
+
inference: false
|
12 |
+
---
|
13 |
+
|
14 |
+
## Introduction
|
15 |
+
|
16 |
+
This model is quantized version of linear merge of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and [daisd-ai/anydef-orpo-v2](https://huggingface.co/daisd-ai/anydef-orpo-v2).
|
17 |
+
|
18 |
+
## Merging
|
19 |
+
|
20 |
+
Models were merged to improve quality of the final model ([idea](https://www.reddit.com/r/LocalLLaMA/comments/1fyx27y/im_pretty_happy_with_how_my_method_worked_out/)) and prevent huge losses during quantization. Merging was done using [mergekit](https://github.com/arcee-ai/mergekit) with following spec:
|
21 |
+
```yaml
|
22 |
+
models:
|
23 |
+
- model: mistralai/Mistral-7B-v0.1
|
24 |
+
parameters:
|
25 |
+
weight: 0.3
|
26 |
+
- model: daisd-ai/anydef-orpo-v2
|
27 |
+
parameters:
|
28 |
+
weight: 0.7
|
29 |
+
merge_method: linear
|
30 |
+
dtype: bfloat16
|
31 |
+
```
|
32 |
+
|
33 |
+
## Quantization
|
34 |
+
|
35 |
+
The quantization was applied using [LLM Compressor](https://github.com/vllm-project/llm-compressor) with 512 random examples from [anydef-kilt-tasks-v2](https://huggingface.co/datasets/daisd-ai/anydef-kilt-tasks-v2) dataset.
|
36 |
+
We tested other number of examples, but did not see noticeable improvement with higher number of examples during quantization.
|
37 |
+
|
38 |
+
## Inference
|
39 |
+
|
40 |
+
For inference code you can check our [github](https://github.com/daisd-ai/universal-el).
|
41 |
+
|
42 |
+
## Benchmarks results
|
43 |
+
|
44 |
+
Precision (%):
|
45 |
+
| Dataset | anydef-v2 | anydef-v2-quant (this) |
|
46 |
+
|------------|------------|------------|
|
47 |
+
| RSS-500 | 66.89| 64.90|
|
48 |
+
| ISTEX-1000| 85.82| 84.33|
|
49 |
+
| Reuters-128| 64.88| 68.28|
|
50 |
+
| TweekiGold| 75.93| 75.93|
|
51 |
+
|
52 |
+
Retrieval rate (%):
|
53 |
+
| Dataset | anydef-v2 | anydef-v2-quant (this) |
|
54 |
+
|------------|------------|------------|
|
55 |
+
| RSS-500 | 84.11| 83.44|
|
56 |
+
| ISTEX-1000| 97.76| 97.31|
|
57 |
+
| Reuters-128| 83.33| 83.87|
|
58 |
+
| TweekiGold| 91.67| 91.44|
|