Upload MPTForCausalLM
Browse files- config.json +53 -0
- configuration_mpt.py +118 -0
- generation_config.json +5 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +201 -0
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mosaicml/mpt-7b",
|
3 |
+
"architectures": [
|
4 |
+
"MPTForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_config": {
|
7 |
+
"alibi": true,
|
8 |
+
"alibi_bias_max": 8,
|
9 |
+
"attn_impl": "torch",
|
10 |
+
"attn_pdrop": 0,
|
11 |
+
"attn_type": "multihead_attention",
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"clip_qkv": null,
|
14 |
+
"prefix_lm": false,
|
15 |
+
"qk_ln": false,
|
16 |
+
"softmax_scale": null
|
17 |
+
},
|
18 |
+
"auto_map": {
|
19 |
+
"AutoConfig": "configuration_mpt.MPTConfig",
|
20 |
+
"AutoModelForCausalLM": "modeling_mpt.MPTForCausalLM"
|
21 |
+
},
|
22 |
+
"d_model": 4096,
|
23 |
+
"emb_pdrop": 0,
|
24 |
+
"embedding_fraction": 1.0,
|
25 |
+
"expansion_ratio": 4,
|
26 |
+
"init_config": {
|
27 |
+
"emb_init_std": null,
|
28 |
+
"emb_init_uniform_lim": null,
|
29 |
+
"fan_mode": "fan_in",
|
30 |
+
"init_div_is_residual": true,
|
31 |
+
"init_gain": 0,
|
32 |
+
"init_nonlinearity": "relu",
|
33 |
+
"init_std": 0.02,
|
34 |
+
"name": "kaiming_normal_",
|
35 |
+
"verbose": 0
|
36 |
+
},
|
37 |
+
"init_device": "cpu",
|
38 |
+
"learned_pos_emb": true,
|
39 |
+
"logit_scale": null,
|
40 |
+
"max_seq_len": 2048,
|
41 |
+
"model_type": "mpt",
|
42 |
+
"n_heads": 32,
|
43 |
+
"n_layers": 32,
|
44 |
+
"no_bias": true,
|
45 |
+
"norm_type": "low_precision_layernorm",
|
46 |
+
"resid_pdrop": 0,
|
47 |
+
"tokenizer_name": "EleutherAI/gpt-neox-20b",
|
48 |
+
"torch_dtype": "float32",
|
49 |
+
"transformers_version": "4.28.1",
|
50 |
+
"use_cache": false,
|
51 |
+
"verbose": 0,
|
52 |
+
"vocab_size": 50432
|
53 |
+
}
|
configuration_mpt.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
5 |
+
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
|
6 |
+
|
7 |
+
class MPTConfig(PretrainedConfig):
|
8 |
+
model_type = 'mpt'
|
9 |
+
|
10 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
|
11 |
+
"""The MPT configuration class.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
d_model (int): The size of the embedding dimension of the model.
|
15 |
+
n_heads (int): The number of attention heads.
|
16 |
+
n_layers (int): The number of layers in the model.
|
17 |
+
expansion_ratio (int): The ratio of the up/down scale in the MLP.
|
18 |
+
max_seq_len (int): The maximum sequence length of the model.
|
19 |
+
vocab_size (int): The size of the vocabulary.
|
20 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
21 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
22 |
+
learned_pos_emb (bool): Whether to use learned positional embeddings
|
23 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
24 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
25 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
26 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
27 |
+
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
28 |
+
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
29 |
+
this value.
|
30 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
31 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
32 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
33 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
34 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
35 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
36 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
37 |
+
which sub-sequence each token belongs to.
|
38 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
39 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
40 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
41 |
+
init_device (str): The device to use for parameter initialization.
|
42 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
43 |
+
no_bias (bool): Whether to use bias in all layers.
|
44 |
+
verbose (int): The verbosity level. 0 is silent.
|
45 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
46 |
+
norm_type (str): choose type of norm to use
|
47 |
+
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
48 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
49 |
+
init_config (Dict): A dictionary used to configure the model initialization:
|
50 |
+
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
51 |
+
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
52 |
+
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
53 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
54 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
55 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
56 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
57 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
58 |
+
if using the baseline_ parameter initialization scheme.
|
59 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
60 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
61 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
62 |
+
---
|
63 |
+
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
64 |
+
"""
|
65 |
+
self.d_model = d_model
|
66 |
+
self.n_heads = n_heads
|
67 |
+
self.n_layers = n_layers
|
68 |
+
self.expansion_ratio = expansion_ratio
|
69 |
+
self.max_seq_len = max_seq_len
|
70 |
+
self.vocab_size = vocab_size
|
71 |
+
self.resid_pdrop = resid_pdrop
|
72 |
+
self.emb_pdrop = emb_pdrop
|
73 |
+
self.learned_pos_emb = learned_pos_emb
|
74 |
+
self.attn_config = attn_config
|
75 |
+
self.init_device = init_device
|
76 |
+
self.logit_scale = logit_scale
|
77 |
+
self.no_bias = no_bias
|
78 |
+
self.verbose = verbose
|
79 |
+
self.embedding_fraction = embedding_fraction
|
80 |
+
self.norm_type = norm_type
|
81 |
+
self.use_cache = use_cache
|
82 |
+
self.init_config = init_config
|
83 |
+
if 'name' in kwargs:
|
84 |
+
del kwargs['name']
|
85 |
+
if 'loss_fn' in kwargs:
|
86 |
+
del kwargs['loss_fn']
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
self._validate_config()
|
89 |
+
|
90 |
+
def _set_config_defaults(self, config, config_defaults):
|
91 |
+
for (k, v) in config_defaults.items():
|
92 |
+
if k not in config:
|
93 |
+
config[k] = v
|
94 |
+
return config
|
95 |
+
|
96 |
+
def _validate_config(self):
|
97 |
+
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
98 |
+
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
99 |
+
if self.d_model % self.n_heads != 0:
|
100 |
+
raise ValueError('d_model must be divisible by n_heads')
|
101 |
+
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
|
102 |
+
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
|
103 |
+
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
104 |
+
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
105 |
+
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
106 |
+
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
|
107 |
+
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
108 |
+
raise NotImplementedError('alibi only implemented with torch and triton attention.')
|
109 |
+
if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
110 |
+
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
|
111 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
112 |
+
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
|
113 |
+
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
|
114 |
+
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
115 |
+
if self.init_config.get('name', None) is None:
|
116 |
+
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
117 |
+
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
118 |
+
raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.28.1",
|
4 |
+
"use_cache": false
|
5 |
+
}
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53786eddecce2d9d9a5dd7e531eb23750a45f498e165e37a12c50583d08f216f
|
3 |
+
size 9953500837
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d78a12c4d4329f061c364b4371e6b469ce5e77fa1d8884329b836680a66b25a2
|
3 |
+
size 9932530109
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d25536c68b4678745e8d46aa713d63241ffcdc398fca7e555676517141505f9
|
3 |
+
size 6711181899
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26597146624
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.blocks.0.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
7 |
+
"transformer.blocks.0.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"transformer.blocks.0.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"transformer.blocks.0.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"transformer.blocks.0.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"transformer.blocks.0.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"transformer.blocks.1.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"transformer.blocks.1.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"transformer.blocks.1.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"transformer.blocks.1.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"transformer.blocks.1.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"transformer.blocks.1.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"transformer.blocks.10.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"transformer.blocks.10.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"transformer.blocks.10.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"transformer.blocks.10.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"transformer.blocks.10.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"transformer.blocks.10.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"transformer.blocks.11.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"transformer.blocks.11.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"transformer.blocks.11.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
27 |
+
"transformer.blocks.11.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
28 |
+
"transformer.blocks.11.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"transformer.blocks.11.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"transformer.blocks.12.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
31 |
+
"transformer.blocks.12.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
32 |
+
"transformer.blocks.12.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
33 |
+
"transformer.blocks.12.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
34 |
+
"transformer.blocks.12.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
35 |
+
"transformer.blocks.12.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
36 |
+
"transformer.blocks.13.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
37 |
+
"transformer.blocks.13.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
38 |
+
"transformer.blocks.13.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"transformer.blocks.13.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"transformer.blocks.13.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
41 |
+
"transformer.blocks.13.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
42 |
+
"transformer.blocks.14.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
43 |
+
"transformer.blocks.14.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
44 |
+
"transformer.blocks.14.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
45 |
+
"transformer.blocks.14.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
46 |
+
"transformer.blocks.14.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
47 |
+
"transformer.blocks.14.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
48 |
+
"transformer.blocks.15.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"transformer.blocks.15.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"transformer.blocks.15.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"transformer.blocks.15.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"transformer.blocks.15.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"transformer.blocks.15.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"transformer.blocks.16.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"transformer.blocks.16.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"transformer.blocks.16.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"transformer.blocks.16.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"transformer.blocks.16.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"transformer.blocks.16.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"transformer.blocks.17.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"transformer.blocks.17.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"transformer.blocks.17.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"transformer.blocks.17.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"transformer.blocks.17.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"transformer.blocks.17.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"transformer.blocks.18.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"transformer.blocks.18.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"transformer.blocks.18.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"transformer.blocks.18.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"transformer.blocks.18.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"transformer.blocks.18.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"transformer.blocks.19.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"transformer.blocks.19.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"transformer.blocks.19.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"transformer.blocks.19.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"transformer.blocks.19.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"transformer.blocks.19.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"transformer.blocks.2.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
79 |
+
"transformer.blocks.2.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
80 |
+
"transformer.blocks.2.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
81 |
+
"transformer.blocks.2.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
82 |
+
"transformer.blocks.2.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
83 |
+
"transformer.blocks.2.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"transformer.blocks.20.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"transformer.blocks.20.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"transformer.blocks.20.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"transformer.blocks.20.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"transformer.blocks.20.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"transformer.blocks.20.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"transformer.blocks.21.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"transformer.blocks.21.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"transformer.blocks.21.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"transformer.blocks.21.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"transformer.blocks.21.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"transformer.blocks.21.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"transformer.blocks.22.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"transformer.blocks.22.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"transformer.blocks.22.ffn.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"transformer.blocks.22.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"transformer.blocks.22.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"transformer.blocks.22.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"transformer.blocks.23.attn.Wqkv.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"transformer.blocks.23.attn.out_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"transformer.blocks.23.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
105 |
+
"transformer.blocks.23.ffn.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"transformer.blocks.23.norm_1.weight": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"transformer.blocks.23.norm_2.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"transformer.blocks.24.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
109 |
+
"transformer.blocks.24.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
110 |
+
"transformer.blocks.24.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
111 |
+
"transformer.blocks.24.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
112 |
+
"transformer.blocks.24.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
113 |
+
"transformer.blocks.24.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
114 |
+
"transformer.blocks.25.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
115 |
+
"transformer.blocks.25.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
116 |
+
"transformer.blocks.25.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
117 |
+
"transformer.blocks.25.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
118 |
+
"transformer.blocks.25.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
119 |
+
"transformer.blocks.25.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
120 |
+
"transformer.blocks.26.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
121 |
+
"transformer.blocks.26.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
122 |
+
"transformer.blocks.26.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
123 |
+
"transformer.blocks.26.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
124 |
+
"transformer.blocks.26.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
125 |
+
"transformer.blocks.26.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
126 |
+
"transformer.blocks.27.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
127 |
+
"transformer.blocks.27.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
128 |
+
"transformer.blocks.27.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
129 |
+
"transformer.blocks.27.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
130 |
+
"transformer.blocks.27.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
131 |
+
"transformer.blocks.27.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
132 |
+
"transformer.blocks.28.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
133 |
+
"transformer.blocks.28.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
134 |
+
"transformer.blocks.28.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
135 |
+
"transformer.blocks.28.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
136 |
+
"transformer.blocks.28.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
137 |
+
"transformer.blocks.28.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
138 |
+
"transformer.blocks.29.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
139 |
+
"transformer.blocks.29.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
140 |
+
"transformer.blocks.29.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
141 |
+
"transformer.blocks.29.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
142 |
+
"transformer.blocks.29.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
143 |
+
"transformer.blocks.29.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
144 |
+
"transformer.blocks.3.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
145 |
+
"transformer.blocks.3.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
146 |
+
"transformer.blocks.3.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
147 |
+
"transformer.blocks.3.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
148 |
+
"transformer.blocks.3.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
149 |
+
"transformer.blocks.3.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
150 |
+
"transformer.blocks.30.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
151 |
+
"transformer.blocks.30.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
152 |
+
"transformer.blocks.30.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
153 |
+
"transformer.blocks.30.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
154 |
+
"transformer.blocks.30.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
155 |
+
"transformer.blocks.30.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
156 |
+
"transformer.blocks.31.attn.Wqkv.weight": "pytorch_model-00003-of-00003.bin",
|
157 |
+
"transformer.blocks.31.attn.out_proj.weight": "pytorch_model-00003-of-00003.bin",
|
158 |
+
"transformer.blocks.31.ffn.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
159 |
+
"transformer.blocks.31.ffn.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
160 |
+
"transformer.blocks.31.norm_1.weight": "pytorch_model-00003-of-00003.bin",
|
161 |
+
"transformer.blocks.31.norm_2.weight": "pytorch_model-00003-of-00003.bin",
|
162 |
+
"transformer.blocks.4.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
163 |
+
"transformer.blocks.4.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
164 |
+
"transformer.blocks.4.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
165 |
+
"transformer.blocks.4.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
166 |
+
"transformer.blocks.4.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
167 |
+
"transformer.blocks.4.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
168 |
+
"transformer.blocks.5.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
169 |
+
"transformer.blocks.5.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
170 |
+
"transformer.blocks.5.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
171 |
+
"transformer.blocks.5.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
172 |
+
"transformer.blocks.5.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
173 |
+
"transformer.blocks.5.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
174 |
+
"transformer.blocks.6.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
175 |
+
"transformer.blocks.6.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
176 |
+
"transformer.blocks.6.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
177 |
+
"transformer.blocks.6.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
178 |
+
"transformer.blocks.6.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
179 |
+
"transformer.blocks.6.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
180 |
+
"transformer.blocks.7.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
181 |
+
"transformer.blocks.7.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
182 |
+
"transformer.blocks.7.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
183 |
+
"transformer.blocks.7.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
184 |
+
"transformer.blocks.7.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
185 |
+
"transformer.blocks.7.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
186 |
+
"transformer.blocks.8.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
187 |
+
"transformer.blocks.8.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
188 |
+
"transformer.blocks.8.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
189 |
+
"transformer.blocks.8.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
190 |
+
"transformer.blocks.8.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
191 |
+
"transformer.blocks.8.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
192 |
+
"transformer.blocks.9.attn.Wqkv.weight": "pytorch_model-00001-of-00003.bin",
|
193 |
+
"transformer.blocks.9.attn.out_proj.weight": "pytorch_model-00001-of-00003.bin",
|
194 |
+
"transformer.blocks.9.ffn.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
195 |
+
"transformer.blocks.9.ffn.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
196 |
+
"transformer.blocks.9.norm_1.weight": "pytorch_model-00001-of-00003.bin",
|
197 |
+
"transformer.blocks.9.norm_2.weight": "pytorch_model-00001-of-00003.bin",
|
198 |
+
"transformer.norm_f.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"transformer.wte.weight": "pytorch_model-00001-of-00003.bin"
|
200 |
+
}
|
201 |
+
}
|