danbrooks commited on
Commit
8683487
1 Parent(s): 1010f01

Model save

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: MCG-NJU/videomae-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: videomae-base-finetuned-ucf101-subset
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # videomae-base-finetuned-ucf101-subset
17
+
18
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.2628
21
+ - Accuracy: 0.9419
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 1
42
+ - eval_batch_size: 1
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 1200
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | 1.444 | 0.25 | 300 | 1.8648 | 0.3143 |
54
+ | 1.3879 | 1.25 | 600 | 1.2844 | 0.6143 |
55
+ | 0.0344 | 2.25 | 900 | 0.5988 | 0.8429 |
56
+ | 0.9644 | 3.25 | 1200 | 0.2345 | 0.9286 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.33.2
62
+ - Pytorch 2.0.1+cu118
63
+ - Datasets 2.14.5
64
+ - Tokenizers 0.13.3