--- license: mit base_model: Helsinki-NLP/opus-mt-en-es tags: - translation - UPV - MIARFID - EuroParl model-index: - name: dap305/Helsinki-finetuned-EuroParl-en-to-es results: - task: type: translation name: Translation En-to-ES dataset: type: translation name: EuroParl.V7.Subset metrics: - type: blue value: 37.083 language: - en - es metrics: - bleu library_name: transformers pipeline_tag: translation datasets: - dap305/processed_europarlv7_subset50k --- # dap305/Helsinki-finetuned-EuroParl-en-to-es This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on a subset of the EuroParl dataset. It achieves the following results on the validation set: - Train Loss: 0.9863 - Validation Loss: 1.1352 - BLUE: 37.083 ## Intended uses & limitations This model has been created for learning purposes at the MIARFID Automatic Translation course. ## Training and evaluation data This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish. Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.2441 | 1.1487 | 0 | | 1.0785 | 1.1351 | 1 | | 0.9863 | 1.1352 | 2 | ### Framework versions - Transformers 4.37.0 - TensorFlow 2.13.0 - Datasets 2.16.1 - Tokenizers 0.15.1