--- language: - ru library_name: lstm pipeline_tag: text-classification tags: - news - media - russian datasets: - data-silence/rus_news_classifier --- # LSTM Text Classifier This is a LSTM model for text classification, trained on my [news dataset](https://huggingface.co/datasets/data-silence/rus_news_classifier), consisting of news from the last 5 years, hosted on Hugging Face Hub. The learning news dataset is a well-balanced sample of recent news from the last five years. ## Model Description This model uses LSTM to classify text into 11 categories. It has been trained on ~70_000 examples and achieves an accuracy of 0.8691 on a test dataset. ## Task The model is designed to classify russian languages news articles into 11 categories. ## Categories The news category is assigned by the classifier to one of 11 categories: - climate (климат) - conflicts (конфликты) - culture (культура) - economy (экономика) - gloss (глянец) - health (здоровье) - politics (политика) - science (наука) - society (общество) - sports (спорт) - travel (путешествия) ## Intended uses & limitations This model has been trained and downloaded for training purposes only. You should not use this model to solve practical problems: LSTM is not the best and fastest solution for text classification. Moreover, the model architecture is not compatible enough to work with the HF library (pipline, endpoints, etc. are not supported). The "gloss" category is used to select yellow press, trashy and dubious news. The model can get confused in the classification of news categories politics, society and conflicts. ## Usage Example of how to use the model: ```python import torch.nn as nn from transformers import BertModel import torch from transformers import AutoTokenizer from huggingface_hub import hf_hub_download class BiLSTMClassifier(nn.Module): def __init__(self, hidden_dim, output_dim, n_layers, dropout): super(BiLSTMClassifier, self).__init__() self.bert = BertModel.from_pretrained("bert-base-multilingual-cased") self.lstm = nn.LSTM(self.bert.config.hidden_size, hidden_dim, num_layers=n_layers, bidirectional=True, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, input_ids, attention_mask, labels=None): with torch.no_grad(): embedded = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0] lstm_out, _ = self.lstm(embedded) pooled = torch.mean(lstm_out, dim=1) logits = self.fc(self.dropout(pooled)) if labels is not None: loss_fn = nn.CrossEntropyLoss() loss = loss_fn(logits, labels) return {"loss": loss, "logits": logits} # Возвращаем словарь return logits # Возвращаем логиты, если метки не переданы categories = ['climate', 'conflicts', 'culture', 'economy', 'gloss', 'health', 'politics', 'science', 'society', 'sports', 'travel'] repo_id = "data-silence/lstm-news-classifier" tokenizer = AutoTokenizer.from_pretrained(repo_id) model_path = hf_hub_download(repo_id=repo_id, filename="model.pth") model = torch.load(model_path) def get_predictions(news: str, model) -> str: with torch.no_grad(): inputs = tokenizer(news, return_tensors="pt") del inputs['token_type_ids'] output = model.forward(**inputs) id_best_label = torch.argmax(output[0, :], dim=-1).detach().cpu().numpy() prediction = categories[id_best_label] return prediction # Использование классификатора get_predictions('В Париже завершилась церемония завершения Олимпийский игр', model=model) # 'sports' ```