Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fr
|
4 |
+
tags:
|
5 |
+
- classification
|
6 |
+
license: apache-2.0
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
widget:
|
10 |
+
- text: "tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les 'ont dit'..."
|
11 |
+
---
|
12 |
+
# camembert-fr-covid-tweet-sentiment-classification
|
13 |
+
This model is a fine-tune checkpoint of [Yanzhu/bertweetfr-base](https://huggingface.co/Yanzhu/bertweetfr-base), fine-tuned on SST-2.
|
14 |
+
This model reaches an accuracy of 71% on the dev set.
|
15 |
+
In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes:
|
16 |
+
-positif
|
17 |
+
-negatif
|
18 |
+
-neutre
|
19 |
+
|
20 |
+
# Pipelining the Model
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
25 |
+
model = AutoModelForSequenceClassification.from_pretrained("Monsia/camembert-fr-covid-tweet-sentiment-classification")
|
26 |
+
nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
|
27 |
+
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")
|
28 |
+
# Output: [{'label': 'opinions', 'score': 0.831]
|
29 |
+
```
|