Datasets:
File size: 1,940 Bytes
ecbd8bb a9c7887 ecbd8bb d63a946 ecbd8bb d62d01b ecbd8bb d62d01b d63a946 e644a19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
---
task_categories:
- multiple-choice
- text-classification
language:
- en
---
# Dataset of (Du et al., 2022) (Unofficial reupload)
## Abstract
>Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal fact to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 20K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.
## Notes
This is an unofficial reupload of the [original e-CARE dataset](https://github.com/waste-wood/e-care). We are not affiliated with the original authors and the Hugging Face team. Please refer to the original paper for more details.
Please note that the original dataset has been modified so that the variable names match with those in the COPA dataset (Roemmele et al., 2011). In addition, only the training and the development sets are [publicly available](https://github.com/waste-wood/e-care).
## References
Du, L., Ding, X., Xiong, K., Liu, T., & Qin, B. (2022). e-CARE: a New Dataset for Exploring Explainable Causal Reasoning. arXiv preprint arXiv:2205.05849.
Roemmele, M., Bejan, C., and Gordon, A. (2011) Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning. AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford University, March 21-23, 2011. |