File size: 5,491 Bytes
b9b9058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import argparse
import torch
from accelerate import DeepSpeedPlugin, Accelerator

from .utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)


def add_deepspeed_arguments(parser: argparse.ArgumentParser):
    # DeepSpeed Arguments. https://huggingface.co/docs/accelerate/usage_guides/deepspeed
    parser.add_argument("--deepspeed", action="store_true", help="enable deepspeed training")
    parser.add_argument("--zero_stage", type=int, default=2, choices=[0, 1, 2, 3], help="Possible options are 0,1,2,3.")
    parser.add_argument(
        "--offload_optimizer_device",
        type=str,
        default=None,
        choices=[None, "cpu", "nvme"],
        help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stages 2 and 3.",
    )
    parser.add_argument(
        "--offload_optimizer_nvme_path",
        type=str,
        default=None,
        help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
    )
    parser.add_argument(
        "--offload_param_device",
        type=str,
        default=None,
        choices=[None, "cpu", "nvme"],
        help="Possible options are none|cpu|nvme. Only applicable with ZeRO Stage 3.",
    )
    parser.add_argument(
        "--offload_param_nvme_path",
        type=str,
        default=None,
        help="Possible options are /nvme|/local_nvme. Only applicable with ZeRO Stage 3.",
    )
    parser.add_argument(
        "--zero3_init_flag",
        action="store_true",
        help="Flag to indicate whether to enable `deepspeed.zero.Init` for constructing massive models."
        "Only applicable with ZeRO Stage-3.",
    )
    parser.add_argument(
        "--zero3_save_16bit_model",
        action="store_true",
        help="Flag to indicate whether to save 16-bit model. Only applicable with ZeRO Stage-3.",
    )
    parser.add_argument(
        "--fp16_master_weights_and_gradients",
        action="store_true",
        help="fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32.",
    )


def prepare_deepspeed_args(args: argparse.Namespace):
    if not args.deepspeed:
        return

    # To avoid RuntimeError: DataLoader worker exited unexpectedly with exit code 1.
    args.max_data_loader_n_workers = 1


def prepare_deepspeed_plugin(args: argparse.Namespace):
    if not args.deepspeed:
        return None

    try:
        import deepspeed
    except ImportError as e:
        logger.error(
            "deepspeed is not installed. please install deepspeed in your environment with following command. DS_BUILD_OPS=0 pip install deepspeed"
        )
        exit(1)

    deepspeed_plugin = DeepSpeedPlugin(
        zero_stage=args.zero_stage,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        gradient_clipping=args.max_grad_norm,
        offload_optimizer_device=args.offload_optimizer_device,
        offload_optimizer_nvme_path=args.offload_optimizer_nvme_path,
        offload_param_device=args.offload_param_device,
        offload_param_nvme_path=args.offload_param_nvme_path,
        zero3_init_flag=args.zero3_init_flag,
        zero3_save_16bit_model=args.zero3_save_16bit_model,
    )
    deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
    deepspeed_plugin.deepspeed_config["train_batch_size"] = (
        args.train_batch_size * args.gradient_accumulation_steps * int(os.environ["WORLD_SIZE"])
    )
    deepspeed_plugin.set_mixed_precision(args.mixed_precision)
    if args.mixed_precision.lower() == "fp16":
        deepspeed_plugin.deepspeed_config["fp16"]["initial_scale_power"] = 0  # preventing overflow.
    if args.full_fp16 or args.fp16_master_weights_and_gradients:
        if args.offload_optimizer_device == "cpu" and args.zero_stage == 2:
            deepspeed_plugin.deepspeed_config["fp16"]["fp16_master_weights_and_grads"] = True
            logger.info("[DeepSpeed] full fp16 enable.")
        else:
            logger.info(
                "[DeepSpeed]full fp16, fp16_master_weights_and_grads currently only supported using ZeRO-Offload with DeepSpeedCPUAdam on ZeRO-2 stage."
            )

    if args.offload_optimizer_device is not None:
        logger.info("[DeepSpeed] start to manually build cpu_adam.")
        deepspeed.ops.op_builder.CPUAdamBuilder().load()
        logger.info("[DeepSpeed] building cpu_adam done.")

    return deepspeed_plugin


# Accelerate library does not support multiple models for deepspeed. So, we need to wrap multiple models into a single model.
def prepare_deepspeed_model(args: argparse.Namespace, **models):
    # remove None from models
    models = {k: v for k, v in models.items() if v is not None}

    class DeepSpeedWrapper(torch.nn.Module):
        def __init__(self, **kw_models) -> None:
            super().__init__()
            self.models = torch.nn.ModuleDict()

            for key, model in kw_models.items():
                if isinstance(model, list):
                    model = torch.nn.ModuleList(model)
                assert isinstance(
                    model, torch.nn.Module
                ), f"model must be an instance of torch.nn.Module, but got {key} is {type(model)}"
                self.models.update(torch.nn.ModuleDict({key: model}))

        def get_models(self):
            return self.models

    ds_model = DeepSpeedWrapper(**models)
    return ds_model