File size: 10,006 Bytes
806602c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import sys
import contextlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from .hijacks import ipex_hijacks

# pylint: disable=protected-access, missing-function-docstring, line-too-long

def ipex_init(): # pylint: disable=too-many-statements
    try:
        if hasattr(torch, "cuda") and hasattr(torch.cuda, "is_xpu_hijacked") and torch.cuda.is_xpu_hijacked:
            return True, "Skipping IPEX hijack"
        else:
            # Replace cuda with xpu:
            torch.cuda.current_device = torch.xpu.current_device
            torch.cuda.current_stream = torch.xpu.current_stream
            torch.cuda.device = torch.xpu.device
            torch.cuda.device_count = torch.xpu.device_count
            torch.cuda.device_of = torch.xpu.device_of
            torch.cuda.get_device_name = torch.xpu.get_device_name
            torch.cuda.get_device_properties = torch.xpu.get_device_properties
            torch.cuda.init = torch.xpu.init
            torch.cuda.is_available = torch.xpu.is_available
            torch.cuda.is_initialized = torch.xpu.is_initialized
            torch.cuda.is_current_stream_capturing = lambda: False
            torch.cuda.set_device = torch.xpu.set_device
            torch.cuda.stream = torch.xpu.stream
            torch.cuda.synchronize = torch.xpu.synchronize
            torch.cuda.Event = torch.xpu.Event
            torch.cuda.Stream = torch.xpu.Stream
            torch.cuda.FloatTensor = torch.xpu.FloatTensor
            torch.Tensor.cuda = torch.Tensor.xpu
            torch.Tensor.is_cuda = torch.Tensor.is_xpu
            torch.nn.Module.cuda = torch.nn.Module.xpu
            torch.UntypedStorage.cuda = torch.UntypedStorage.xpu
            torch.cuda._initialization_lock = torch.xpu.lazy_init._initialization_lock
            torch.cuda._initialized = torch.xpu.lazy_init._initialized
            torch.cuda._lazy_seed_tracker = torch.xpu.lazy_init._lazy_seed_tracker
            torch.cuda._queued_calls = torch.xpu.lazy_init._queued_calls
            torch.cuda._tls = torch.xpu.lazy_init._tls
            torch.cuda.threading = torch.xpu.lazy_init.threading
            torch.cuda.traceback = torch.xpu.lazy_init.traceback
            torch.cuda.Optional = torch.xpu.Optional
            torch.cuda.__cached__ = torch.xpu.__cached__
            torch.cuda.__loader__ = torch.xpu.__loader__
            torch.cuda.ComplexFloatStorage = torch.xpu.ComplexFloatStorage
            torch.cuda.Tuple = torch.xpu.Tuple
            torch.cuda.streams = torch.xpu.streams
            torch.cuda._lazy_new = torch.xpu._lazy_new
            torch.cuda.FloatStorage = torch.xpu.FloatStorage
            torch.cuda.Any = torch.xpu.Any
            torch.cuda.__doc__ = torch.xpu.__doc__
            torch.cuda.default_generators = torch.xpu.default_generators
            torch.cuda.HalfTensor = torch.xpu.HalfTensor
            torch.cuda._get_device_index = torch.xpu._get_device_index
            torch.cuda.__path__ = torch.xpu.__path__
            torch.cuda.Device = torch.xpu.Device
            torch.cuda.IntTensor = torch.xpu.IntTensor
            torch.cuda.ByteStorage = torch.xpu.ByteStorage
            torch.cuda.set_stream = torch.xpu.set_stream
            torch.cuda.BoolStorage = torch.xpu.BoolStorage
            torch.cuda.os = torch.xpu.os
            torch.cuda.torch = torch.xpu.torch
            torch.cuda.BFloat16Storage = torch.xpu.BFloat16Storage
            torch.cuda.Union = torch.xpu.Union
            torch.cuda.DoubleTensor = torch.xpu.DoubleTensor
            torch.cuda.ShortTensor = torch.xpu.ShortTensor
            torch.cuda.LongTensor = torch.xpu.LongTensor
            torch.cuda.IntStorage = torch.xpu.IntStorage
            torch.cuda.LongStorage = torch.xpu.LongStorage
            torch.cuda.__annotations__ = torch.xpu.__annotations__
            torch.cuda.__package__ = torch.xpu.__package__
            torch.cuda.__builtins__ = torch.xpu.__builtins__
            torch.cuda.CharTensor = torch.xpu.CharTensor
            torch.cuda.List = torch.xpu.List
            torch.cuda._lazy_init = torch.xpu._lazy_init
            torch.cuda.BFloat16Tensor = torch.xpu.BFloat16Tensor
            torch.cuda.DoubleStorage = torch.xpu.DoubleStorage
            torch.cuda.ByteTensor = torch.xpu.ByteTensor
            torch.cuda.StreamContext = torch.xpu.StreamContext
            torch.cuda.ComplexDoubleStorage = torch.xpu.ComplexDoubleStorage
            torch.cuda.ShortStorage = torch.xpu.ShortStorage
            torch.cuda._lazy_call = torch.xpu._lazy_call
            torch.cuda.HalfStorage = torch.xpu.HalfStorage
            torch.cuda.random = torch.xpu.random
            torch.cuda._device = torch.xpu._device
            torch.cuda.classproperty = torch.xpu.classproperty
            torch.cuda.__name__ = torch.xpu.__name__
            torch.cuda._device_t = torch.xpu._device_t
            torch.cuda.warnings = torch.xpu.warnings
            torch.cuda.__spec__ = torch.xpu.__spec__
            torch.cuda.BoolTensor = torch.xpu.BoolTensor
            torch.cuda.CharStorage = torch.xpu.CharStorage
            torch.cuda.__file__ = torch.xpu.__file__
            torch.cuda._is_in_bad_fork = torch.xpu.lazy_init._is_in_bad_fork
            # torch.cuda.is_current_stream_capturing = torch.xpu.is_current_stream_capturing

            # Memory:
            torch.cuda.memory = torch.xpu.memory
            if 'linux' in sys.platform and "WSL2" in os.popen("uname -a").read():
                torch.xpu.empty_cache = lambda: None
            torch.cuda.empty_cache = torch.xpu.empty_cache
            torch.cuda.memory_stats = torch.xpu.memory_stats
            torch.cuda.memory_summary = torch.xpu.memory_summary
            torch.cuda.memory_snapshot = torch.xpu.memory_snapshot
            torch.cuda.memory_allocated = torch.xpu.memory_allocated
            torch.cuda.max_memory_allocated = torch.xpu.max_memory_allocated
            torch.cuda.memory_reserved = torch.xpu.memory_reserved
            torch.cuda.memory_cached = torch.xpu.memory_reserved
            torch.cuda.max_memory_reserved = torch.xpu.max_memory_reserved
            torch.cuda.max_memory_cached = torch.xpu.max_memory_reserved
            torch.cuda.reset_peak_memory_stats = torch.xpu.reset_peak_memory_stats
            torch.cuda.reset_max_memory_cached = torch.xpu.reset_peak_memory_stats
            torch.cuda.reset_max_memory_allocated = torch.xpu.reset_peak_memory_stats
            torch.cuda.memory_stats_as_nested_dict = torch.xpu.memory_stats_as_nested_dict
            torch.cuda.reset_accumulated_memory_stats = torch.xpu.reset_accumulated_memory_stats

            # RNG:
            torch.cuda.get_rng_state = torch.xpu.get_rng_state
            torch.cuda.get_rng_state_all = torch.xpu.get_rng_state_all
            torch.cuda.set_rng_state = torch.xpu.set_rng_state
            torch.cuda.set_rng_state_all = torch.xpu.set_rng_state_all
            torch.cuda.manual_seed = torch.xpu.manual_seed
            torch.cuda.manual_seed_all = torch.xpu.manual_seed_all
            torch.cuda.seed = torch.xpu.seed
            torch.cuda.seed_all = torch.xpu.seed_all
            torch.cuda.initial_seed = torch.xpu.initial_seed

            # AMP:
            torch.cuda.amp = torch.xpu.amp
            torch.is_autocast_enabled = torch.xpu.is_autocast_xpu_enabled
            torch.get_autocast_gpu_dtype = torch.xpu.get_autocast_xpu_dtype

            if not hasattr(torch.cuda.amp, "common"):
                torch.cuda.amp.common = contextlib.nullcontext()
            torch.cuda.amp.common.amp_definitely_not_available = lambda: False

            try:
                torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
            except Exception: # pylint: disable=broad-exception-caught
                try:
                    from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error
                    gradscaler_init()
                    torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
                except Exception: # pylint: disable=broad-exception-caught
                    torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler

            # C
            torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
            ipex._C._DeviceProperties.multi_processor_count = ipex._C._DeviceProperties.gpu_subslice_count
            ipex._C._DeviceProperties.major = 2024
            ipex._C._DeviceProperties.minor = 0

            # Fix functions with ipex:
            torch.cuda.mem_get_info = lambda device=None: [(torch.xpu.get_device_properties(device).total_memory - torch.xpu.memory_reserved(device)), torch.xpu.get_device_properties(device).total_memory]
            torch._utils._get_available_device_type = lambda: "xpu"
            torch.has_cuda = True
            torch.cuda.has_half = True
            torch.cuda.is_bf16_supported = lambda *args, **kwargs: True
            torch.cuda.is_fp16_supported = lambda *args, **kwargs: True
            torch.backends.cuda.is_built = lambda *args, **kwargs: True
            torch.version.cuda = "12.1"
            torch.cuda.get_device_capability = lambda *args, **kwargs: [12,1]
            torch.cuda.get_device_properties.major = 12
            torch.cuda.get_device_properties.minor = 1
            torch.cuda.ipc_collect = lambda *args, **kwargs: None
            torch.cuda.utilization = lambda *args, **kwargs: 0

            ipex_hijacks()
            if not torch.xpu.has_fp64_dtype() or os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is not None:
                try:
                    from .diffusers import ipex_diffusers
                    ipex_diffusers()
                except Exception: # pylint: disable=broad-exception-caught
                    pass
            torch.cuda.is_xpu_hijacked = True
    except Exception as e:
        return False, e
    return True, None