File size: 15,080 Bytes
d565e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import diffusers #0.24.0 # pylint: disable=import-error
from diffusers.models.attention_processor import Attention
from diffusers.utils import USE_PEFT_BACKEND
from functools import cache
# pylint: disable=protected-access, missing-function-docstring, line-too-long
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))
@cache
def find_slice_size(slice_size, slice_block_size):
while (slice_size * slice_block_size) > attention_slice_rate:
slice_size = slice_size // 2
if slice_size <= 1:
slice_size = 1
break
return slice_size
@cache
def find_attention_slice_sizes(query_shape, query_element_size, query_device_type, slice_size=None):
if len(query_shape) == 3:
batch_size_attention, query_tokens, shape_three = query_shape
shape_four = 1
else:
batch_size_attention, query_tokens, shape_three, shape_four = query_shape
if slice_size is not None:
batch_size_attention = slice_size
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
split_2_slice_size = query_tokens
split_3_slice_size = shape_three
do_split = False
do_split_2 = False
do_split_3 = False
if query_device_type != "xpu":
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
if block_size > attention_slice_rate:
do_split = True
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
if split_slice_size * slice_block_size > attention_slice_rate:
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
do_split_2 = True
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
do_split_3 = True
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
class SlicedAttnProcessor: # pylint: disable=too-few-public-methods
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor,
encoder_hidden_states=None, attention_mask=None) -> torch.FloatTensor: # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, shape_three = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
####################################################################
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
_, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type, slice_size=self.slice_size)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
del attn_slice
####################################################################
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor:
r"""
Default processor for performing attention-related computations.
"""
def __call__(self, attn: Attention, hidden_states: torch.FloatTensor,
encoder_hidden_states=None, attention_mask=None,
temb=None, scale: float = 1.0) -> torch.Tensor: # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
####################################################################
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_attention_slice_sizes(query.shape, query.element_size(), query.device.type)
if do_split:
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2]
key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2]
attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2])
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice
del attn_slice
else:
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
del query_slice
del key_slice
del attn_mask_slice
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
del attn_slice
torch.xpu.synchronize(query.device)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
####################################################################
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def ipex_diffusers():
#ARC GPUs can't allocate more than 4GB to a single block:
diffusers.models.attention_processor.SlicedAttnProcessor = SlicedAttnProcessor
diffusers.models.attention_processor.AttnProcessor = AttnProcessor
|