File size: 13,770 Bytes
89d0178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
from functools import wraps
from contextlib import nullcontext
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import numpy as np
device_supports_fp64 = torch.xpu.has_fp64_dtype()
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return nullcontext()
@property
def is_cuda(self):
return self.device.type == 'xpu' or self.device.type == 'cuda'
def check_device(device):
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
def return_xpu(device):
return f"xpu:{device.split(':')[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu"
# Autocast
original_autocast_init = torch.amp.autocast_mode.autocast.__init__
@wraps(torch.amp.autocast_mode.autocast.__init__)
def autocast_init(self, device_type, dtype=None, enabled=True, cache_enabled=None):
if device_type == "cuda":
return original_autocast_init(self, device_type="xpu", dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
else:
return original_autocast_init(self, device_type=device_type, dtype=dtype, enabled=enabled, cache_enabled=cache_enabled)
# Latent Antialias CPU Offload:
original_interpolate = torch.nn.functional.interpolate
@wraps(torch.nn.functional.interpolate)
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
if antialias or align_corners is not None or mode == 'bicubic':
return_device = tensor.device
return_dtype = tensor.dtype
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
else:
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
# Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
original_from_numpy = torch.from_numpy
@wraps(torch.from_numpy)
def from_numpy(ndarray):
if ndarray.dtype == float:
return original_from_numpy(ndarray.astype('float32'))
else:
return original_from_numpy(ndarray)
original_as_tensor = torch.as_tensor
@wraps(torch.as_tensor)
def as_tensor(data, dtype=None, device=None):
if check_device(device):
device = return_xpu(device)
if isinstance(data, np.ndarray) and data.dtype == float and not (
(isinstance(device, torch.device) and device.type == "cpu") or (isinstance(device, str) and "cpu" in device)):
return original_as_tensor(data, dtype=torch.float32, device=device)
else:
return original_as_tensor(data, dtype=dtype, device=device)
if device_supports_fp64 and os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is None:
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
else:
# 32 bit attention workarounds for Alchemist:
try:
from .attention import torch_bmm_32_bit as original_torch_bmm
from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention
except Exception: # pylint: disable=broad-exception-caught
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
# Data Type Errors:
@wraps(torch.bmm)
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
return original_torch_bmm(input, mat2, out=out)
@wraps(torch.nn.functional.scaled_dot_product_attention)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
if query.dtype != key.dtype:
key = key.to(dtype=query.dtype)
if query.dtype != value.dtype:
value = value.to(dtype=query.dtype)
if attn_mask is not None and query.dtype != attn_mask.dtype:
attn_mask = attn_mask.to(dtype=query.dtype)
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)
# A1111 FP16
original_functional_group_norm = torch.nn.functional.group_norm
@wraps(torch.nn.functional.group_norm)
def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_group_norm(input, num_groups, weight=weight, bias=bias, eps=eps)
# A1111 BF16
original_functional_layer_norm = torch.nn.functional.layer_norm
@wraps(torch.nn.functional.layer_norm)
def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05):
if weight is not None and input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_layer_norm(input, normalized_shape, weight=weight, bias=bias, eps=eps)
# Training
original_functional_linear = torch.nn.functional.linear
@wraps(torch.nn.functional.linear)
def functional_linear(input, weight, bias=None):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_linear(input, weight, bias=bias)
original_functional_conv2d = torch.nn.functional.conv2d
@wraps(torch.nn.functional.conv2d)
def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if input.dtype != weight.data.dtype:
input = input.to(dtype=weight.data.dtype)
if bias is not None and bias.data.dtype != weight.data.dtype:
bias.data = bias.data.to(dtype=weight.data.dtype)
return original_functional_conv2d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
# A1111 Embedding BF16
original_torch_cat = torch.cat
@wraps(torch.cat)
def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
else:
return original_torch_cat(tensor, *args, **kwargs)
# SwinIR BF16:
original_functional_pad = torch.nn.functional.pad
@wraps(torch.nn.functional.pad)
def functional_pad(input, pad, mode='constant', value=None):
if mode == 'reflect' and input.dtype == torch.bfloat16:
return original_functional_pad(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16)
else:
return original_functional_pad(input, pad, mode=mode, value=value)
original_torch_tensor = torch.tensor
@wraps(torch.tensor)
def torch_tensor(data, *args, dtype=None, device=None, **kwargs):
if check_device(device):
device = return_xpu(device)
if not device_supports_fp64:
if (isinstance(device, torch.device) and device.type == "xpu") or (isinstance(device, str) and "xpu" in device):
if dtype == torch.float64:
dtype = torch.float32
elif dtype is None and (hasattr(data, "dtype") and (data.dtype == torch.float64 or data.dtype == float)):
dtype = torch.float32
return original_torch_tensor(data, *args, dtype=dtype, device=device, **kwargs)
original_Tensor_to = torch.Tensor.to
@wraps(torch.Tensor.to)
def Tensor_to(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_to(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_to(self, device, *args, **kwargs)
original_Tensor_cuda = torch.Tensor.cuda
@wraps(torch.Tensor.cuda)
def Tensor_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_Tensor_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_cuda(self, device, *args, **kwargs)
original_Tensor_pin_memory = torch.Tensor.pin_memory
@wraps(torch.Tensor.pin_memory)
def Tensor_pin_memory(self, device=None, *args, **kwargs):
if device is None:
device = "xpu"
if check_device(device):
return original_Tensor_pin_memory(self, return_xpu(device), *args, **kwargs)
else:
return original_Tensor_pin_memory(self, device, *args, **kwargs)
original_UntypedStorage_init = torch.UntypedStorage.__init__
@wraps(torch.UntypedStorage.__init__)
def UntypedStorage_init(*args, device=None, **kwargs):
if check_device(device):
return original_UntypedStorage_init(*args, device=return_xpu(device), **kwargs)
else:
return original_UntypedStorage_init(*args, device=device, **kwargs)
original_UntypedStorage_cuda = torch.UntypedStorage.cuda
@wraps(torch.UntypedStorage.cuda)
def UntypedStorage_cuda(self, device=None, *args, **kwargs):
if check_device(device):
return original_UntypedStorage_cuda(self, return_xpu(device), *args, **kwargs)
else:
return original_UntypedStorage_cuda(self, device, *args, **kwargs)
original_torch_empty = torch.empty
@wraps(torch.empty)
def torch_empty(*args, device=None, **kwargs):
if check_device(device):
return original_torch_empty(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_empty(*args, device=device, **kwargs)
original_torch_randn = torch.randn
@wraps(torch.randn)
def torch_randn(*args, device=None, dtype=None, **kwargs):
if dtype == bytes:
dtype = None
if check_device(device):
return original_torch_randn(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_randn(*args, device=device, **kwargs)
original_torch_ones = torch.ones
@wraps(torch.ones)
def torch_ones(*args, device=None, **kwargs):
if check_device(device):
return original_torch_ones(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_ones(*args, device=device, **kwargs)
original_torch_zeros = torch.zeros
@wraps(torch.zeros)
def torch_zeros(*args, device=None, **kwargs):
if check_device(device):
return original_torch_zeros(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_zeros(*args, device=device, **kwargs)
original_torch_linspace = torch.linspace
@wraps(torch.linspace)
def torch_linspace(*args, device=None, **kwargs):
if check_device(device):
return original_torch_linspace(*args, device=return_xpu(device), **kwargs)
else:
return original_torch_linspace(*args, device=device, **kwargs)
original_torch_Generator = torch.Generator
@wraps(torch.Generator)
def torch_Generator(device=None):
if check_device(device):
return original_torch_Generator(return_xpu(device))
else:
return original_torch_Generator(device)
original_torch_load = torch.load
@wraps(torch.load)
def torch_load(f, map_location=None, *args, **kwargs):
if map_location is None:
map_location = "xpu"
if check_device(map_location):
return original_torch_load(f, *args, map_location=return_xpu(map_location), **kwargs)
else:
return original_torch_load(f, *args, map_location=map_location, **kwargs)
# Hijack Functions:
def ipex_hijacks():
torch.tensor = torch_tensor
torch.Tensor.to = Tensor_to
torch.Tensor.cuda = Tensor_cuda
torch.Tensor.pin_memory = Tensor_pin_memory
torch.UntypedStorage.__init__ = UntypedStorage_init
torch.UntypedStorage.cuda = UntypedStorage_cuda
torch.empty = torch_empty
torch.randn = torch_randn
torch.ones = torch_ones
torch.zeros = torch_zeros
torch.linspace = torch_linspace
torch.Generator = torch_Generator
torch.load = torch_load
torch.backends.cuda.sdp_kernel = return_null_context
torch.nn.DataParallel = DummyDataParallel
torch.UntypedStorage.is_cuda = is_cuda
torch.amp.autocast_mode.autocast.__init__ = autocast_init
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
torch.nn.functional.group_norm = functional_group_norm
torch.nn.functional.layer_norm = functional_layer_norm
torch.nn.functional.linear = functional_linear
torch.nn.functional.conv2d = functional_conv2d
torch.nn.functional.interpolate = interpolate
torch.nn.functional.pad = functional_pad
torch.bmm = torch_bmm
torch.cat = torch_cat
if not device_supports_fp64:
torch.from_numpy = from_numpy
torch.as_tensor = as_tensor
|