File size: 5,316 Bytes
1eb9457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import os

import regex

import torch
from library.device_utils import init_ipex
init_ipex()

from library import sdxl_model_util, sdxl_train_util, train_util

import train_textual_inversion


class SdxlTextualInversionTrainer(train_textual_inversion.TextualInversionTrainer):
    def __init__(self):
        super().__init__()
        self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
        self.is_sdxl = True

    def assert_extra_args(self, args, train_dataset_group):
        super().assert_extra_args(args, train_dataset_group)
        sdxl_train_util.verify_sdxl_training_args(args, supportTextEncoderCaching=False)

        train_dataset_group.verify_bucket_reso_steps(32)

    def load_target_model(self, args, weight_dtype, accelerator):
        (
            load_stable_diffusion_format,
            text_encoder1,
            text_encoder2,
            vae,
            unet,
            logit_scale,
            ckpt_info,
        ) = sdxl_train_util.load_target_model(args, accelerator, sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, weight_dtype)

        self.load_stable_diffusion_format = load_stable_diffusion_format
        self.logit_scale = logit_scale
        self.ckpt_info = ckpt_info

        return sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, [text_encoder1, text_encoder2], vae, unet

    def load_tokenizer(self, args):
        tokenizer = sdxl_train_util.load_tokenizers(args)
        return tokenizer

    def get_text_cond(self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype):
        input_ids1 = batch["input_ids"]
        input_ids2 = batch["input_ids2"]
        with torch.enable_grad():
            input_ids1 = input_ids1.to(accelerator.device)
            input_ids2 = input_ids2.to(accelerator.device)
            encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
                args.max_token_length,
                input_ids1,
                input_ids2,
                tokenizers[0],
                tokenizers[1],
                text_encoders[0],
                text_encoders[1],
                None if not args.full_fp16 else weight_dtype,
                accelerator=accelerator,
            )
        return encoder_hidden_states1, encoder_hidden_states2, pool2

    def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
        noisy_latents = noisy_latents.to(weight_dtype)  # TODO check why noisy_latents is not weight_dtype

        # get size embeddings
        orig_size = batch["original_sizes_hw"]
        crop_size = batch["crop_top_lefts"]
        target_size = batch["target_sizes_hw"]
        embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)

        # concat embeddings
        encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
        vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
        text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)

        noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
        return noise_pred

    def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement):
        sdxl_train_util.sample_images(
            accelerator, args, epoch, global_step, device, vae, tokenizer, text_encoder, unet, prompt_replacement
        )

    def save_weights(self, file, updated_embs, save_dtype, metadata):
        state_dict = {"clip_l": updated_embs[0], "clip_g": updated_embs[1]}

        if save_dtype is not None:
            for key in list(state_dict.keys()):
                v = state_dict[key]
                v = v.detach().clone().to("cpu").to(save_dtype)
                state_dict[key] = v

        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import save_file

            save_file(state_dict, file, metadata)
        else:
            torch.save(state_dict, file)

    def load_weights(self, file):
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import load_file

            data = load_file(file)
        else:
            data = torch.load(file, map_location="cpu")

        emb_l = data.get("clip_l", None)  # ViT-L text encoder 1
        emb_g = data.get("clip_g", None)  # BiG-G text encoder 2

        assert (
            emb_l is not None or emb_g is not None
        ), f"weight file does not contains weights for text encoder 1 or 2 / 重みファイルにテキストエンコーダー1または2の重みが含まれていません: {file}"

        return [emb_l, emb_g]


def setup_parser() -> argparse.ArgumentParser:
    parser = train_textual_inversion.setup_parser()
    # don't add sdxl_train_util.add_sdxl_training_arguments(parser): because it only adds text encoder caching
    # sdxl_train_util.add_sdxl_training_arguments(parser)
    return parser


if __name__ == "__main__":
    parser = setup_parser()

    args = parser.parse_args()
    train_util.verify_command_line_training_args(args)
    args = train_util.read_config_from_file(args, parser)

    trainer = SdxlTextualInversionTrainer()
    trainer.train(args)