File size: 21,713 Bytes
69aad76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import torch
import argparse
import random
import re
from typing import List, Optional, Union
from .utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)


def prepare_scheduler_for_custom_training(noise_scheduler, device):
    if hasattr(noise_scheduler, "all_snr"):
        return

    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
    sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
    alpha = sqrt_alphas_cumprod
    sigma = sqrt_one_minus_alphas_cumprod
    all_snr = (alpha / sigma) ** 2

    noise_scheduler.all_snr = all_snr.to(device)


def fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler):
    # fix beta: zero terminal SNR
    logger.info(f"fix noise scheduler betas: https://arxiv.org/abs/2305.08891")

    def enforce_zero_terminal_snr(betas):
        # Convert betas to alphas_bar_sqrt
        alphas = 1 - betas
        alphas_bar = alphas.cumprod(0)
        alphas_bar_sqrt = alphas_bar.sqrt()

        # Store old values.
        alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
        alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
        # Shift so last timestep is zero.
        alphas_bar_sqrt -= alphas_bar_sqrt_T
        # Scale so first timestep is back to old value.
        alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

        # Convert alphas_bar_sqrt to betas
        alphas_bar = alphas_bar_sqrt**2
        alphas = alphas_bar[1:] / alphas_bar[:-1]
        alphas = torch.cat([alphas_bar[0:1], alphas])
        betas = 1 - alphas
        return betas

    betas = noise_scheduler.betas
    betas = enforce_zero_terminal_snr(betas)
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)

    # logger.info(f"original: {noise_scheduler.betas}")
    # logger.info(f"fixed: {betas}")

    noise_scheduler.betas = betas
    noise_scheduler.alphas = alphas
    noise_scheduler.alphas_cumprod = alphas_cumprod


def apply_snr_weight(loss, timesteps, noise_scheduler, gamma, v_prediction=False):
    snr = torch.stack([noise_scheduler.all_snr[t] for t in timesteps])
    min_snr_gamma = torch.minimum(snr, torch.full_like(snr, gamma))
    if v_prediction:
        snr_weight = torch.div(min_snr_gamma, snr + 1).float().to(loss.device)
    else:
        snr_weight = torch.div(min_snr_gamma, snr).float().to(loss.device)
    loss = loss * snr_weight
    return loss


def scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler):
    scale = get_snr_scale(timesteps, noise_scheduler)
    loss = loss * scale
    return loss


def get_snr_scale(timesteps, noise_scheduler):
    snr_t = torch.stack([noise_scheduler.all_snr[t] for t in timesteps])  # batch_size
    snr_t = torch.minimum(snr_t, torch.ones_like(snr_t) * 1000)  # if timestep is 0, snr_t is inf, so limit it to 1000
    scale = snr_t / (snr_t + 1)
    # # show debug info
    # logger.info(f"timesteps: {timesteps}, snr_t: {snr_t}, scale: {scale}")
    return scale


def add_v_prediction_like_loss(loss, timesteps, noise_scheduler, v_pred_like_loss):
    scale = get_snr_scale(timesteps, noise_scheduler)
    # logger.info(f"add v-prediction like loss: {v_pred_like_loss}, scale: {scale}, loss: {loss}, time: {timesteps}")
    loss = loss + loss / scale * v_pred_like_loss
    return loss


def apply_debiased_estimation(loss, timesteps, noise_scheduler):
    snr_t = torch.stack([noise_scheduler.all_snr[t] for t in timesteps])  # batch_size
    snr_t = torch.minimum(snr_t, torch.ones_like(snr_t) * 1000)  # if timestep is 0, snr_t is inf, so limit it to 1000
    weight = 1 / torch.sqrt(snr_t)
    loss = weight * loss
    return loss


# TODO train_utilと分散しているのでどちらかに寄せる


def add_custom_train_arguments(parser: argparse.ArgumentParser, support_weighted_captions: bool = True):
    parser.add_argument(
        "--min_snr_gamma",
        type=float,
        default=None,
        help="gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by paper. / 低いタイムステップでの高いlossに対して重みを減らすためのgamma値、低いほど効果が強く、論文では5が推奨",
    )
    parser.add_argument(
        "--scale_v_pred_loss_like_noise_pred",
        action="store_true",
        help="scale v-prediction loss like noise prediction loss / v-prediction lossをnoise prediction lossと同じようにスケーリングする",
    )
    parser.add_argument(
        "--v_pred_like_loss",
        type=float,
        default=None,
        help="add v-prediction like loss multiplied by this value / v-prediction lossをこの値をかけたものをlossに加算する",
    )
    parser.add_argument(
        "--debiased_estimation_loss",
        action="store_true",
        help="debiased estimation loss / debiased estimation loss",
    )
    if support_weighted_captions:
        parser.add_argument(
            "--weighted_captions",
            action="store_true",
            default=False,
            help="Enable weighted captions in the standard style (token:1.3). No commas inside parens, or shuffle/dropout may break the decoder. / 「[token]」、「(token)」「(token:1.3)」のような重み付きキャプションを有効にする。カンマを括弧内に入れるとシャッフルやdropoutで重みづけがおかしくなるので注意",
        )


re_attention = re.compile(
    r"""

\\\(|

\\\)|

\\\[|

\\]|

\\\\|

\\|

\(|

\[|

:([+-]?[.\d]+)\)|

\)|

]|

[^\\()\[\]:]+|

:

""",
    re.X,
)


def parse_prompt_attention(text):
    """

    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.

    Accepted tokens are:

      (abc) - increases attention to abc by a multiplier of 1.1

      (abc:3.12) - increases attention to abc by a multiplier of 3.12

      [abc] - decreases attention to abc by a multiplier of 1.1

      \( - literal character '('

      \[ - literal character '['

      \) - literal character ')'

      \] - literal character ']'

      \\ - literal character '\'

      anything else - just text

    >>> parse_prompt_attention('normal text')

    [['normal text', 1.0]]

    >>> parse_prompt_attention('an (important) word')

    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]

    >>> parse_prompt_attention('(unbalanced')

    [['unbalanced', 1.1]]

    >>> parse_prompt_attention('\(literal\]')

    [['(literal]', 1.0]]

    >>> parse_prompt_attention('(unnecessary)(parens)')

    [['unnecessaryparens', 1.1]]

    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')

    [['a ', 1.0],

     ['house', 1.5730000000000004],

     [' ', 1.1],

     ['on', 1.0],

     [' a ', 1.1],

     ['hill', 0.55],

     [', sun, ', 1.1],

     ['sky', 1.4641000000000006],

     ['.', 1.1]]

    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


def get_prompts_with_weights(tokenizer, prompt: List[str], max_length: int):
    r"""

    Tokenize a list of prompts and return its tokens with weights of each token.



    No padding, starting or ending token is included.

    """
    tokens = []
    weights = []
    truncated = False
    for text in prompt:
        texts_and_weights = parse_prompt_attention(text)
        text_token = []
        text_weight = []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = tokenizer(word).input_ids[1:-1]
            text_token += token
            # copy the weight by length of token
            text_weight += [weight] * len(token)
            # stop if the text is too long (longer than truncation limit)
            if len(text_token) > max_length:
                truncated = True
                break
        # truncate
        if len(text_token) > max_length:
            truncated = True
            text_token = text_token[:max_length]
            text_weight = text_weight[:max_length]
        tokens.append(text_token)
        weights.append(text_weight)
    if truncated:
        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
    return tokens, weights


def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
    r"""

    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.

    """
    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
    for i in range(len(tokens)):
        tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
        if no_boseos_middle:
            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
        else:
            w = []
            if len(weights[i]) == 0:
                w = [1.0] * weights_length
            else:
                for j in range(max_embeddings_multiples):
                    w.append(1.0)  # weight for starting token in this chunk
                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
                    w.append(1.0)  # weight for ending token in this chunk
                w += [1.0] * (weights_length - len(w))
            weights[i] = w[:]

    return tokens, weights


def get_unweighted_text_embeddings(

    tokenizer,

    text_encoder,

    text_input: torch.Tensor,

    chunk_length: int,

    clip_skip: int,

    eos: int,

    pad: int,

    no_boseos_middle: Optional[bool] = True,

):
    """

    When the length of tokens is a multiple of the capacity of the text encoder,

    it should be split into chunks and sent to the text encoder individually.

    """
    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
    if max_embeddings_multiples > 1:
        text_embeddings = []
        for i in range(max_embeddings_multiples):
            # extract the i-th chunk
            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()

            # cover the head and the tail by the starting and the ending tokens
            text_input_chunk[:, 0] = text_input[0, 0]
            if pad == eos:  # v1
                text_input_chunk[:, -1] = text_input[0, -1]
            else:  # v2
                for j in range(len(text_input_chunk)):
                    if text_input_chunk[j, -1] != eos and text_input_chunk[j, -1] != pad:  # 最後に普通の文字がある
                        text_input_chunk[j, -1] = eos
                    if text_input_chunk[j, 1] == pad:  # BOSだけであとはPAD
                        text_input_chunk[j, 1] = eos

            if clip_skip is None or clip_skip == 1:
                text_embedding = text_encoder(text_input_chunk)[0]
            else:
                enc_out = text_encoder(text_input_chunk, output_hidden_states=True, return_dict=True)
                text_embedding = enc_out["hidden_states"][-clip_skip]
                text_embedding = text_encoder.text_model.final_layer_norm(text_embedding)

            if no_boseos_middle:
                if i == 0:
                    # discard the ending token
                    text_embedding = text_embedding[:, :-1]
                elif i == max_embeddings_multiples - 1:
                    # discard the starting token
                    text_embedding = text_embedding[:, 1:]
                else:
                    # discard both starting and ending tokens
                    text_embedding = text_embedding[:, 1:-1]

            text_embeddings.append(text_embedding)
        text_embeddings = torch.concat(text_embeddings, axis=1)
    else:
        if clip_skip is None or clip_skip == 1:
            text_embeddings = text_encoder(text_input)[0]
        else:
            enc_out = text_encoder(text_input, output_hidden_states=True, return_dict=True)
            text_embeddings = enc_out["hidden_states"][-clip_skip]
            text_embeddings = text_encoder.text_model.final_layer_norm(text_embeddings)
    return text_embeddings


def get_weighted_text_embeddings(

    tokenizer,

    text_encoder,

    prompt: Union[str, List[str]],

    device,

    max_embeddings_multiples: Optional[int] = 3,

    no_boseos_middle: Optional[bool] = False,

    clip_skip=None,

):
    r"""

    Prompts can be assigned with local weights using brackets. For example,

    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',

    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.



    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.



    Args:

        prompt (`str` or `List[str]`):

            The prompt or prompts to guide the image generation.

        max_embeddings_multiples (`int`, *optional*, defaults to `3`):

            The max multiple length of prompt embeddings compared to the max output length of text encoder.

        no_boseos_middle (`bool`, *optional*, defaults to `False`):

            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and

            ending token in each of the chunk in the middle.

        skip_parsing (`bool`, *optional*, defaults to `False`):

            Skip the parsing of brackets.

        skip_weighting (`bool`, *optional*, defaults to `False`):

            Skip the weighting. When the parsing is skipped, it is forced True.

    """
    max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
    if isinstance(prompt, str):
        prompt = [prompt]

    prompt_tokens, prompt_weights = get_prompts_with_weights(tokenizer, prompt, max_length - 2)

    # round up the longest length of tokens to a multiple of (model_max_length - 2)
    max_length = max([len(token) for token in prompt_tokens])

    max_embeddings_multiples = min(
        max_embeddings_multiples,
        (max_length - 1) // (tokenizer.model_max_length - 2) + 1,
    )
    max_embeddings_multiples = max(1, max_embeddings_multiples)
    max_length = (tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

    # pad the length of tokens and weights
    bos = tokenizer.bos_token_id
    eos = tokenizer.eos_token_id
    pad = tokenizer.pad_token_id
    prompt_tokens, prompt_weights = pad_tokens_and_weights(
        prompt_tokens,
        prompt_weights,
        max_length,
        bos,
        eos,
        no_boseos_middle=no_boseos_middle,
        chunk_length=tokenizer.model_max_length,
    )
    prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=device)

    # get the embeddings
    text_embeddings = get_unweighted_text_embeddings(
        tokenizer,
        text_encoder,
        prompt_tokens,
        tokenizer.model_max_length,
        clip_skip,
        eos,
        pad,
        no_boseos_middle=no_boseos_middle,
    )
    prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=device)

    # assign weights to the prompts and normalize in the sense of mean
    previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
    text_embeddings = text_embeddings * prompt_weights.unsqueeze(-1)
    current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
    text_embeddings = text_embeddings * (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)

    return text_embeddings


# https://wandb.ai/johnowhitaker/multires_noise/reports/Multi-Resolution-Noise-for-Diffusion-Model-Training--VmlldzozNjYyOTU2
def pyramid_noise_like(noise, device, iterations=6, discount=0.4):
    b, c, w, h = noise.shape  # EDIT: w and h get over-written, rename for a different variant!
    u = torch.nn.Upsample(size=(w, h), mode="bilinear").to(device)
    for i in range(iterations):
        r = random.random() * 2 + 2  # Rather than always going 2x,
        wn, hn = max(1, int(w / (r**i))), max(1, int(h / (r**i)))
        noise += u(torch.randn(b, c, wn, hn).to(device)) * discount**i
        if wn == 1 or hn == 1:
            break  # Lowest resolution is 1x1
    return noise / noise.std()  # Scaled back to roughly unit variance


# https://www.crosslabs.org//blog/diffusion-with-offset-noise
def apply_noise_offset(latents, noise, noise_offset, adaptive_noise_scale):
    if noise_offset is None:
        return noise
    if adaptive_noise_scale is not None:
        # latent shape: (batch_size, channels, height, width)
        # abs mean value for each channel
        latent_mean = torch.abs(latents.mean(dim=(2, 3), keepdim=True))

        # multiply adaptive noise scale to the mean value and add it to the noise offset
        noise_offset = noise_offset + adaptive_noise_scale * latent_mean
        noise_offset = torch.clamp(noise_offset, 0.0, None)  # in case of adaptive noise scale is negative

    noise = noise + noise_offset * torch.randn((latents.shape[0], latents.shape[1], 1, 1), device=latents.device)
    return noise


def apply_masked_loss(loss, batch):
    # mask image is -1 to 1. we need to convert it to 0 to 1
    mask_image = batch["conditioning_images"].to(dtype=loss.dtype)[:, 0].unsqueeze(1)  # use R channel

    # resize to the same size as the loss
    mask_image = torch.nn.functional.interpolate(mask_image, size=loss.shape[2:], mode="area")
    mask_image = mask_image / 2 + 0.5
    loss = loss * mask_image
    return loss


"""

##########################################

# Perlin Noise

def rand_perlin_2d(device, shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):

    delta = (res[0] / shape[0], res[1] / shape[1])

    d = (shape[0] // res[0], shape[1] // res[1])



    grid = (

        torch.stack(

            torch.meshgrid(torch.arange(0, res[0], delta[0], device=device), torch.arange(0, res[1], delta[1], device=device)),

            dim=-1,

        )

        % 1

    )

    angles = 2 * torch.pi * torch.rand(res[0] + 1, res[1] + 1, device=device)

    gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1)



    tile_grads = (

        lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]

        .repeat_interleave(d[0], 0)

        .repeat_interleave(d[1], 1)

    )

    dot = lambda grad, shift: (

        torch.stack((grid[: shape[0], : shape[1], 0] + shift[0], grid[: shape[0], : shape[1], 1] + shift[1]), dim=-1)

        * grad[: shape[0], : shape[1]]

    ).sum(dim=-1)



    n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])

    n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])

    n01 = dot(tile_grads([0, -1], [1, None]), [0, -1])

    n11 = dot(tile_grads([1, None], [1, None]), [-1, -1])

    t = fade(grid[: shape[0], : shape[1]])

    return 1.414 * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1])





def rand_perlin_2d_octaves(device, shape, res, octaves=1, persistence=0.5):

    noise = torch.zeros(shape, device=device)

    frequency = 1

    amplitude = 1

    for _ in range(octaves):

        noise += amplitude * rand_perlin_2d(device, shape, (frequency * res[0], frequency * res[1]))

        frequency *= 2

        amplitude *= persistence

    return noise





def perlin_noise(noise, device, octaves):

    _, c, w, h = noise.shape

    perlin = lambda: rand_perlin_2d_octaves(device, (w, h), (4, 4), octaves)

    noise_perlin = []

    for _ in range(c):

        noise_perlin.append(perlin())

    noise_perlin = torch.stack(noise_perlin).unsqueeze(0)   # (1, c, w, h)

    noise += noise_perlin # broadcast for each batch

    return noise / noise.std()  # Scaled back to roughly unit variance

"""