File size: 8,067 Bytes
e6e3c5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# latentsのdiskへの事前キャッシュを行う / cache latents to disk
import argparse
import math
from multiprocessing import Value
import os
from accelerate.utils import set_seed
import torch
from tqdm import tqdm
from library import config_util
from library import train_util
from library import sdxl_train_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def cache_to_disk(args: argparse.Namespace) -> None:
train_util.prepare_dataset_args(args, True)
# check cache latents arg
assert args.cache_latents_to_disk, "cache_latents_to_disk must be True / cache_latents_to_diskはTrueである必要があります"
use_dreambooth_method = args.in_json is None
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
# tokenizerを準備する:datasetを動かすために必要
if args.sdxl:
tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
tokenizers = [tokenizer1, tokenizer2]
else:
tokenizer = train_util.load_tokenizer(args)
tokenizers = [tokenizer]
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, False, True))
if args.dataset_config is not None:
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "in_json"]
if any(getattr(args, attr) is not None for attr in ignored):
logger.warning(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
if use_dreambooth_method:
logger.info("Using DreamBooth method.")
user_config = {
"datasets": [
{
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
args.train_data_dir, args.reg_data_dir
)
}
]
}
else:
logger.info("Training with captions.")
user_config = {
"datasets": [
{
"subsets": [
{
"image_dir": args.train_data_dir,
"metadata_file": args.in_json,
}
]
}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizers)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizers)
# datasetのcache_latentsを呼ばなければ、生の画像が返る
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
# acceleratorを準備する
logger.info("prepare accelerator")
accelerator = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, _ = train_util.prepare_dtype(args)
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
# モデルを読み込む
logger.info("load model")
if args.sdxl:
(_, _, _, vae, _, _, _) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
else:
_, vae, _, _ = train_util.load_target_model(args, weight_dtype, accelerator)
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
vae.set_use_memory_efficient_attention_xformers(args.xformers)
vae.to(accelerator.device, dtype=vae_dtype)
vae.requires_grad_(False)
vae.eval()
# dataloaderを準備する
train_dataset_group.set_caching_mode("latents")
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collator,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# acceleratorを使ってモデルを準備する:マルチGPUで使えるようになるはず
train_dataloader = accelerator.prepare(train_dataloader)
# データ取得のためのループ
for batch in tqdm(train_dataloader):
b_size = len(batch["images"])
vae_batch_size = b_size if args.vae_batch_size is None else args.vae_batch_size
flip_aug = batch["flip_aug"]
random_crop = batch["random_crop"]
bucket_reso = batch["bucket_reso"]
# バッチを分割して処理する
for i in range(0, b_size, vae_batch_size):
images = batch["images"][i : i + vae_batch_size]
absolute_paths = batch["absolute_paths"][i : i + vae_batch_size]
resized_sizes = batch["resized_sizes"][i : i + vae_batch_size]
image_infos = []
for i, (image, absolute_path, resized_size) in enumerate(zip(images, absolute_paths, resized_sizes)):
image_info = train_util.ImageInfo(absolute_path, 1, "dummy", False, absolute_path)
image_info.image = image
image_info.bucket_reso = bucket_reso
image_info.resized_size = resized_size
image_info.latents_npz = os.path.splitext(absolute_path)[0] + ".npz"
if args.skip_existing:
if train_util.is_disk_cached_latents_is_expected(image_info.bucket_reso, image_info.latents_npz, flip_aug):
logger.warning(f"Skipping {image_info.latents_npz} because it already exists.")
continue
image_infos.append(image_info)
if len(image_infos) > 0:
train_util.cache_batch_latents(vae, True, image_infos, flip_aug, random_crop)
accelerator.wait_for_everyone()
accelerator.print(f"Finished caching latents for {len(train_dataset_group)} batches.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_training_arguments(parser, True)
train_util.add_dataset_arguments(parser, True, True, True)
config_util.add_config_arguments(parser)
parser.add_argument("--sdxl", action="store_true", help="Use SDXL model / SDXLモデルを使用する")
parser.add_argument(
"--no_half_vae",
action="store_true",
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
)
parser.add_argument(
"--skip_existing",
action="store_true",
help="skip images if npz already exists (both normal and flipped exists if flip_aug is enabled) / npzが既に存在する画像をスキップする(flip_aug有効時は通常、反転の両方が存在する画像をスキップ)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
cache_to_disk(args)
|