File size: 13,360 Bytes
c51edd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
from typing import List, NamedTuple, Any
import numpy as np
import cv2
import torch
from safetensors.torch import load_file
from library.original_unet import UNet2DConditionModel, SampleOutput
import library.model_util as model_util
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class ControlNetInfo(NamedTuple):
unet: Any
net: Any
prep: Any
weight: float
ratio: float
class ControlNet(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
# make control model
self.control_model = torch.nn.Module()
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280, 1280, 1280, 1280]
zero_convs = torch.nn.ModuleList()
for i, dim in enumerate(dims):
sub_list = torch.nn.ModuleList([torch.nn.Conv2d(dim, dim, 1)])
zero_convs.append(sub_list)
self.control_model.add_module("zero_convs", zero_convs)
middle_block_out = torch.nn.Conv2d(1280, 1280, 1)
self.control_model.add_module("middle_block_out", torch.nn.ModuleList([middle_block_out]))
dims = [16, 16, 32, 32, 96, 96, 256, 320]
strides = [1, 1, 2, 1, 2, 1, 2, 1]
prev_dim = 3
input_hint_block = torch.nn.Sequential()
for i, (dim, stride) in enumerate(zip(dims, strides)):
input_hint_block.append(torch.nn.Conv2d(prev_dim, dim, 3, stride, 1))
if i < len(dims) - 1:
input_hint_block.append(torch.nn.SiLU())
prev_dim = dim
self.control_model.add_module("input_hint_block", input_hint_block)
def load_control_net(v2, unet, model):
device = unet.device
# control sdからキー変換しつつU-Netに対応する部分のみ取り出し、DiffusersのU-Netに読み込む
# state dictを読み込む
logger.info(f"ControlNet: loading control SD model : {model}")
if model_util.is_safetensors(model):
ctrl_sd_sd = load_file(model)
else:
ctrl_sd_sd = torch.load(model, map_location="cpu")
ctrl_sd_sd = ctrl_sd_sd.pop("state_dict", ctrl_sd_sd)
# 重みをU-Netに読み込めるようにする。ControlNetはSD版のstate dictなので、それを読み込む
is_difference = "difference" in ctrl_sd_sd
logger.info(f"ControlNet: loading difference: {is_difference}")
# ControlNetには存在しないキーがあるので、まず現在のU-NetでSD版の全keyを作っておく
# またTransfer Controlの元weightとなる
ctrl_unet_sd_sd = model_util.convert_unet_state_dict_to_sd(v2, unet.state_dict())
# 元のU-Netに影響しないようにコピーする。またprefixが付いていないので付ける
for key in list(ctrl_unet_sd_sd.keys()):
ctrl_unet_sd_sd["model.diffusion_model." + key] = ctrl_unet_sd_sd.pop(key).clone()
zero_conv_sd = {}
for key in list(ctrl_sd_sd.keys()):
if key.startswith("control_"):
unet_key = "model.diffusion_" + key[len("control_") :]
if unet_key not in ctrl_unet_sd_sd: # zero conv
zero_conv_sd[key] = ctrl_sd_sd[key]
continue
if is_difference: # Transfer Control
ctrl_unet_sd_sd[unet_key] += ctrl_sd_sd[key].to(device, dtype=unet.dtype)
else:
ctrl_unet_sd_sd[unet_key] = ctrl_sd_sd[key].to(device, dtype=unet.dtype)
unet_config = model_util.create_unet_diffusers_config(v2)
ctrl_unet_du_sd = model_util.convert_ldm_unet_checkpoint(v2, ctrl_unet_sd_sd, unet_config) # DiffUsers版ControlNetのstate dict
# ControlNetのU-Netを作成する
ctrl_unet = UNet2DConditionModel(**unet_config)
info = ctrl_unet.load_state_dict(ctrl_unet_du_sd)
logger.info(f"ControlNet: loading Control U-Net: {info}")
# U-Net以外のControlNetを作成する
# TODO support middle only
ctrl_net = ControlNet()
info = ctrl_net.load_state_dict(zero_conv_sd)
logger.info("ControlNet: loading ControlNet: {info}")
ctrl_unet.to(unet.device, dtype=unet.dtype)
ctrl_net.to(unet.device, dtype=unet.dtype)
return ctrl_unet, ctrl_net
def load_preprocess(prep_type: str):
if prep_type is None or prep_type.lower() == "none":
return None
if prep_type.startswith("canny"):
args = prep_type.split("_")
th1 = int(args[1]) if len(args) >= 2 else 63
th2 = int(args[2]) if len(args) >= 3 else 191
def canny(img):
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
return cv2.Canny(img, th1, th2)
return canny
logger.info(f"Unsupported prep type: {prep_type}")
return None
def preprocess_ctrl_net_hint_image(image):
image = np.array(image).astype(np.float32) / 255.0
# ControlNetのサンプルはcv2を使っているが、読み込みはGradioなので実はRGBになっている
# image = image[:, :, ::-1].copy() # rgb to bgr
image = image[None].transpose(0, 3, 1, 2) # nchw
image = torch.from_numpy(image)
return image # 0 to 1
def get_guided_hints(control_nets: List[ControlNetInfo], num_latent_input, b_size, hints):
guided_hints = []
for i, cnet_info in enumerate(control_nets):
# hintは 1枚目の画像のcnet1, 1枚目の画像のcnet2, 1枚目の画像のcnet3, 2枚目の画像のcnet1, 2枚目の画像のcnet2 ... と並んでいること
b_hints = []
if len(hints) == 1: # すべて同じ画像をhintとして使う
hint = hints[0]
if cnet_info.prep is not None:
hint = cnet_info.prep(hint)
hint = preprocess_ctrl_net_hint_image(hint)
b_hints = [hint for _ in range(b_size)]
else:
for bi in range(b_size):
hint = hints[(bi * len(control_nets) + i) % len(hints)]
if cnet_info.prep is not None:
hint = cnet_info.prep(hint)
hint = preprocess_ctrl_net_hint_image(hint)
b_hints.append(hint)
b_hints = torch.cat(b_hints, dim=0)
b_hints = b_hints.to(cnet_info.unet.device, dtype=cnet_info.unet.dtype)
guided_hint = cnet_info.net.control_model.input_hint_block(b_hints)
guided_hints.append(guided_hint)
return guided_hints
def call_unet_and_control_net(
step,
num_latent_input,
original_unet,
control_nets: List[ControlNetInfo],
guided_hints,
current_ratio,
sample,
timestep,
encoder_hidden_states,
encoder_hidden_states_for_control_net,
):
# ControlNet
# 複数のControlNetの場合は、出力をマージするのではなく交互に適用する
cnet_cnt = len(control_nets)
cnet_idx = step % cnet_cnt
cnet_info = control_nets[cnet_idx]
# logger.info(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
if cnet_info.ratio < current_ratio:
return original_unet(sample, timestep, encoder_hidden_states)
guided_hint = guided_hints[cnet_idx]
# gradual latent support: match the size of guided_hint to the size of sample
if guided_hint.shape[-2:] != sample.shape[-2:]:
# print(f"guided_hint.shape={guided_hint.shape}, sample.shape={sample.shape}")
org_dtype = guided_hint.dtype
if org_dtype == torch.bfloat16:
guided_hint = guided_hint.to(torch.float32)
guided_hint = torch.nn.functional.interpolate(guided_hint, size=sample.shape[-2:], mode="bicubic")
if org_dtype == torch.bfloat16:
guided_hint = guided_hint.to(org_dtype)
guided_hint = guided_hint.repeat((num_latent_input, 1, 1, 1))
outs = unet_forward(
True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states_for_control_net
)
outs = [o * cnet_info.weight for o in outs]
# U-Net
return unet_forward(False, cnet_info.net, original_unet, None, outs, sample, timestep, encoder_hidden_states)
"""
# これはmergeのバージョン
# ControlNet
cnet_outs_list = []
for i, cnet_info in enumerate(control_nets):
# logger.info(current_ratio, cnet_info.prep, cnet_info.weight, cnet_info.ratio)
if cnet_info.ratio < current_ratio:
continue
guided_hint = guided_hints[i]
outs = unet_forward(True, cnet_info.net, cnet_info.unet, guided_hint, None, sample, timestep, encoder_hidden_states)
for i in range(len(outs)):
outs[i] *= cnet_info.weight
cnet_outs_list.append(outs)
count = len(cnet_outs_list)
if count == 0:
return original_unet(sample, timestep, encoder_hidden_states)
# sum of controlnets
for i in range(1, count):
cnet_outs_list[0] += cnet_outs_list[i]
# U-Net
return unet_forward(False, cnet_info.net, original_unet, None, cnet_outs_list[0], sample, timestep, encoder_hidden_states)
"""
def unet_forward(
is_control_net,
control_net: ControlNet,
unet: UNet2DConditionModel,
guided_hint,
ctrl_outs,
sample,
timestep,
encoder_hidden_states,
):
# copy from UNet2DConditionModel
default_overall_up_factor = 2**unet.num_upsamplers
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = unet.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=unet.dtype)
emb = unet.time_embedding(t_emb)
outs = [] # output of ControlNet
zc_idx = 0
# 2. pre-process
sample = unet.conv_in(sample)
if is_control_net:
sample += guided_hint
outs.append(control_net.control_model.zero_convs[zc_idx][0](sample)) # , emb, encoder_hidden_states))
zc_idx += 1
# 3. down
down_block_res_samples = (sample,)
for downsample_block in unet.down_blocks:
if downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
if is_control_net:
for rs in res_samples:
outs.append(control_net.control_model.zero_convs[zc_idx][0](rs)) # , emb, encoder_hidden_states))
zc_idx += 1
down_block_res_samples += res_samples
# 4. mid
sample = unet.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
if is_control_net:
outs.append(control_net.control_model.middle_block_out[0](sample))
return outs
if not is_control_net:
sample += ctrl_outs.pop()
# 5. up
for i, upsample_block in enumerate(unet.up_blocks):
is_final_block = i == len(unet.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if not is_control_net and len(ctrl_outs) > 0:
res_samples = list(res_samples)
apply_ctrl_outs = ctrl_outs[-len(res_samples) :]
ctrl_outs = ctrl_outs[: -len(res_samples)]
for j in range(len(res_samples)):
res_samples[j] = res_samples[j] + apply_ctrl_outs[j]
res_samples = tuple(res_samples)
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
sample = unet.conv_norm_out(sample)
sample = unet.conv_act(sample)
sample = unet.conv_out(sample)
return SampleOutput(sample=sample)
|